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We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the
presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field
equations and the kinematieikona) description in terms of a stochastic moving-boundary or sharp-interface
approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in
the original field equations, to first order in noise strength, but including a partial resummation to all orders
which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the
noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts,
affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift
of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise
parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the
guantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughen-
ing. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are
successfully tested against rigorous results and show excellent agreement with numerical simulations of
reaction-diffusion field equations with multiplicative noise.
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I. INTRODUCTION in different photosensitive nonlinear chemical reactions,
through the optical projection of computer-designed spa-
The dynamics of localized solutions in the form of fronts tiotemporal fluctuations in the local illumination conditions,
or pulses in reaction-diffusion systems has received a gre&cting as a stochastic control parameft2d—23. From a
deal of attention for a long time in the context of nonequi-theoretical point of view, a common starting point to study
librium extended systenid]. Examples of fronts formed by fluctuations is in terms of master equations defining the evo-
stable regions invading unstable or metastable ones afition of reacting and diffusing particles in a lattickl]. The
found in a large variety of physical, chemical, or biological €onnection of this microscopic level of description to the
systems, and have been studied in great dg2aif]]. In the mesoscopic one in terms of .Langevm .fleld _equauon.s lhas
context of excitable media and chemical waves extendeBroved a rather subtle issue, in connection with the distinc-
pulses do also exhibt & rich phenomenoldgy . As op-  co 20 SRS PGS B TR SR L o
posed to fronts, excitation waves or pulses are such that thfe y b 9 y

region behind them eventually returns to the same linearl erent nature of these two types of front, and the
g y ¥:orresponding consequences concerning the presence of cut-

stable state that is ahead. In this case, in dimensions highg [24—-27 and the effects of fluctuations, started to emerge
than one there may be open ends of the pulse region that g'\[§2,13,15—1}’. It has been shown, for instance, that pulled

rise to spiral[two-dimensional(2D)] or scroll (3D) waves.  fonts define a universality class of kinetic roughening dif-

There has been much interest in the study of such objecig ent from the Kardar-Parisi-Zharf§PZ) universality class
from the fundamental point of view of pattern forming dy- [16,17. On the other hand, it has been shown that intrinsic
namics, but also because of their potential applications imojse at the microscopic level may induce a morphological
biological systems, such as in cardiac tis$a6]. In this instability at the macroscopic level of descriptiph4]. In
paper we will not consider the case of open ends, so unlesgis paper we will be mostly concerned with the macroscopic
otherwise specified, we will refer to fronts and pulses with-description of pushed fronts with fluctuations, but also with
out distinction under the common term of “fronts.” how this description incorporates the transition to pulled
One aspect that has received increasing interest in recefrionts induced by the noise itself.
years has been the effect of fluctuations of both internal and In the absence of noise, and in the appropriate limit, the
external origin on the dynamics and the roughening propereescription of fronts and pulses defined by reaction-diffusion
ties of fronts[11-19. More recently, the effect of noise in field equations can be reduced by means of a moving bound-
pattern forming dynamics of chemical waves has been fosary approximation to a kinematic description in terms of
tered by the development of the experimental capability ofmuch simpler local equatiori®,28]. This procedure, which
introducing external spatiotemporal noise in a controlled wayis mathematically well grounded in the framework of the
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so-called inertial manifold reduction, can be carried out systhe effective interface description in the presence of fluctua-
tematically, for instance, through asymptotic matching techtions must be worked out at the level of the dynamical equa-
niques using the front thickness as a small parameter defiriions.

ing a singular perturbation problef@9]. This is commonly ~ The purpose of this paper is to address this point by de-
used to relate macroscopic interface equations to ordefiving stochastic eikonal equations, including the complete
parameter or phase_field descriptions in many problems inSpeCiﬁcation of the noise statistics in connection with that of
volving interface dynamics, such as solidificatifdo,31, the noise in the mesoscopic field equations. In particular, we
viscous fingering32], etc. In the case of chemical pulses in Shall focus on the singular dependence on the spatial cutoff
excitable media in the limit of weak excitability, this leads to WN€n noise is multiplicative, and its importance in the quan-
a local equation where the normal velocity of the pulse is Jitative _descrlptlon of_th_e statl_stlcal properties of the front
constant plus a correction proportional to curvafi@ This fluctuations. The predictions will be tested against numerical
is often called the eikonal equation. In the case of open engsSimulations of reaction-diffusion equations, and also in cases
a similar local equation can be derived for the motion of the?VN€re exact results are available concerning the spectrum of
end point of the pulsé9,28]. For pushed fronts it can be interface fluctuations. We will also see that the stochastic
shown that for smooth, long wavelength deformations of the€ikonal equation derived is consistent with the scenario of
front, the separation of time scales between the soft defof® Pushed-pulled transition, and that changing the spatial

mation modes and the internal degrees of freedom of thgUtOff or the noise intensity may have effects as drastic as
fields leads naturally to the same eikonal equation. Fofh@nging the universality class of kinetic roughening of the

pulled fronts, however, this separation of time scales doelont through that transition. o
not exist, the relaxation being algebraic instead of exponen- Although the method of obtaining the stochastic eikonal

tial, and a local moving-boundary approximation is not jus_eqL_Jation pregented _here is _n_ot a firs_t-principles rigorous deri-
tified [29]. vation, we will provide sufficient evidence to conclude that

The kinematic description in terms of eikonal-like equa—the result is the correct one to lowest order in noise intensity,

tions is a very useful approximation from both a theoreticalncuding the singular dependence on the noise correlation
and a practical point of view. In the context of the study of CUtoff (which involves a partial resummation to all orders
universality of fluctuation properti€83,34 for instance, it Within the long time and length scale limits which are inher-
leads naturally to the relevant effective universal descriptiorf"t 0 the kinematic description itself. However, it does not
of a broad class of systems in terms of the KPZ equatiori@PPIy {0 situations in which the front dynamics is nonlocal,
[35]. It is also very useful for numerical simulation purposes,SUch as solidification fronts or viscous fingers, where a dif-
since it avoids resolving the fine structure of the front and thd€"ent type of formulation is appropriate even in the deter-
bulk degrees of freedom, which become irrelevant, dealinginistic case30-32,40Q.
only with the kinematic degrees of freedom of an object of
reduced dimension. Il. KINEMATIC REDUCTION FOR GENERIC

When noise is present in the original field equations, how- REACTION-DIFFUSION SYSTEMS
ever, the situation is not so clear. Stochastic eikonal equa- | o ;s consider a vectorial fielb(x,t) with N compo-

tions have proved useful in a phenomenological descriptimp]en,[S BH(X)=b1(X) #n(x) in a d-dimensional space
of the dynamics of pulses and spiral waves in photosensitive . " — 1x ' \./v.h.ic’:hNobeys a reaction-diffusion equa-
chemical systems with external noise imposed on the iIIumi—,[ion with iﬁulﬁbl’icda;tive noise of the form

nation conditiong21,27. Such a description, however, re-
lied on some fitting parameters and some uncontrolled hy- a
potheses on the way the noise must enter the kinematic ot
equations. These results, together with the fact that the sta-

tistical properties of the noise present in thosg eXperimemﬁ/heren(x,t) is a Gaussian noise with zero mean and corre-
are fully controlled, clearly call for a more “microscopic” |4tion given by

derivation of stochastic kinematic equations corresponding

to Langevin reaction-diffusion field equations with multipli- (n(x,t)n(x’,t’))=2)\‘dC(|x—x’|/)\)5(t—t’). 2)
cative noise, with no free parameters. The connection be-

tween bulk and interface fluctuations has been worked out sé/e take a one-component noise for simplicity, as the natural
far only for equilibrium fluctuations in coarse-grained, case when it originates in fluctuations of a single control
Ginzburg-Landau-like equatioi86—39. In such cases, the parameter. The generalization of the formalism to multicom-
sharp-interface limit can be taken at the level of the fregponent noise is straightforward. Notice the asymmetry with
energy, and the existence of a fluctuation-dissipation theorenvhich we treat the spatial and temporal correlators of the
then yields the proper way to incorporate thermal fluctua-noise. As we will see, this reflects a nontrivial issue related to
tions into the effective interface equations. However, inthe intrinsically different nature of the white noise limit in
many nonequilibrium systems, for instance in the context opace as opposed to time. We have taken in(Bcthe noise
reaction-diffusion problems, a free-energy or generically aas s-function correlated in time. This temporal white noise
Liapunov functional may not exist and no fluctuation- limit is well behaved, once a prescription for the multiplica-
dissipation relation may be invoked for external noise. Intive noise term in Eq(l) has been chosen. For external fluc-
such cases the connection between the bulk description aridations the physically relevant prescription is to consider the

DV2p+1(p)+e % b) n(x,1), (1)
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white noise as the limit of some properly defined correlatedions (see, for instance, Refg43,44)) in one dimension. On
noise. This corresponds to the well-known Stratonovich prethe contrary, this cannot be the case for a Stratonovich noise,
scription[41]. On the other hand, the spatial noise must al-as is obvious from the singular dependenceohe prac-
ways be defined as colored, its whitencorrelatedl limit  tical implications of these facts are that, while the singular
being intrinsically ill defined. Hence the notation with the contribution of\ in the Stratonovich term must be kept ex-
function\ ~C(r/\) in the correlator, meaning a general cor- pjicitly, the dependence ok contained inQ may indeed be
relation function, dependent on some correlation length  weak (nonsingulay, and negligible if\ is much smaller than
which in the limitA—0 is such thah ~C(r/\)—&(r). The  the other length scales in the problem, in particular the front
fact that the spatial continuum limk—0O does not exist in  thickness. This is rigorous only in one dimension, for in-
the Stratonovich interpretation is thus reflected in the facktance in the case discussed in Ré5]. In higher dimen-
that, even ifA is much smaller than any other Iength scale insions, a residual Strong dependence of a given quantity on
the problem, the existence of such a microscopic cutoff althe cutoff\ associated with the noise terfd can only be
ways shows up in the quantitative description of the largeuled out empirically, as we check in our numerical simula-
scale behavior and cannot be reabsorbed in a redefinition @bon in the sections below. Therefore, the splitting of the
parameters. That is, the noise cannot be considered as effeStratonovich noise by means of a deterministic term plus an
tively white in space, regardless of how small the noise coritg multiplicative noise has the virtue of isolating the singu-
relation length is. lar dependence on the microscopic cutoff. This will also de-
The multiplicative noise term present in EQ) has an  fine a useful partial resummation of orderssp. With the
average value different from zero. Applying the Novikov ahove considerations, the theory here presented is thus ex-
theorem[42], we get pected to beocorrect to first order én to all orders ine/\,
31’2<g( ) n(x,t)>=s)\*dC(O)(G(¢)> , 3 222;?ag(r)?]elr7(\angt)rr].the regular dependence 8f on the noise
where Equation(5) will be our starting point. We are interested
in representing the dynamics of a front obeying E5).as the
39i(P) evolution of a @—1)-dimensional surface. In this effective
Gi(p)=2 WQJ(@- (4)  dynamics we assume the details of the front structate
! ! scales of the order of or smaller than the front thickihéss

This suggests separating the average contribution from th unirfnportant. g_] what foIIc|>wfs we wil gog(sjidder the evolu-
multiplicative noise term and rewriting E@L) in terms of a tion of a one-dimensional front embedded in a two-

renormalized potential and a zero average noise, dimensional system. In the procedure we are going to apply
we will write the evolution equatiort5) in the curvilinear

b ., » qoqrdinates de_fined by thel 1D front. in the sharp—interface
=i ~ DV é+h(¢)+e0 (b x1), (5) limit, and obtain the evolution equation for this front as a
solvability problem with the basic assumption that curvature
where and noise are small perturbations.
Before proceeding with the formal derivation, let us first
h( ) =f( )+ e\ 9C(0)G( ) (6)  point out some subtleties related to the stochastic case as
opposed to the deterministic one. In the latter, it is customary
and to define a curvilinear coordinate systemr( in whichr
_ =0 stands for the curve representing the front position,
QP x=C(P) n(x,) =L IC(0)G(¢). ()  which can be associated, for instance, with a level curve of
the appropriate field. The scheme assumes that the front
thickness is small compared to the radius of curvature, and
that the relaxation of the internal degrees of freedom of the
front is fast compared to the time scale of the long wave-
length deformations of the front. When noise is present in the
lim Q(,x,t)=G( ) 7,(x,1), (8) field equation, th_e appr(_)priate curvilinear c_oordinate system
A—0 cannot be associated with level curves, which are very rough
at length scales smaller than the front thickness. On the other
where 7,(x,t) is now a white noise in the ltsterpretation.  hand, at larger scales, which are the ones we are interested
The deterministic ternfn thus includes noise effects through in, a coarse-grained description makes perfect sense. This is
the so-called Stratonovich term that has been addefl to actually implicit in the very idea of the stochastic eikonal
These noise effects on the deterministic part of &j.de-  equation. One can think of different schemes to explicitly
pend on a “dressed” noise intensity, which contains the define such a coarse-grained description, all of them equiva-
singular dependence on the spatial cutoff in the form of thdent. However, since the rest of the derivation cannot be car-
“pbare” & ase,=&C(0)\ % An important point is that the ried out explicitly in full rigor in any of those, and since the
spatial white noise limit in the continuum equations can onlyresult is expected to be independent of the details of the
be mathematically well defined for an” Iteoise. This has definition of the coarse graining, we will proceed more or
been proved rigorously for relatively broad classes of equaless heuristically. In essence this is a reformulation of the

Here the new nois€) has zero average. Notice that this
decomposition corresponds to transforming EL. into its
equivalent Ifostochastic equation in the white noise limit.
Accordingly, the stochastic terifd reduces to
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approach introduced for the derivation of the diffusive wan-Eqg. (9), and is the fundamental quantity we are interested in.
dering of fronts in one dimension discussed in Réf3]. The noise term in Eq9) must also be considered as coarse
There, the basic idea was that only the low-frequency comgrained, with the high-frequency high-wave-number compo-
ponents of the noise are responsible for the front wanderingents integrated out.

so the high-frequency components can be implicitly inte- At this point of the derivation it is useful to consider the

grated out. The effect of the high-frequency components oflD problem which corresponds to the zeroth order of the
the noise is thus to renormalize the mean front profile. As aikonal description. This is defined by neglecting the curva-
consequence, they renormalize the front velocity, and alsture and the fluctuating term in E(P):

the diffusion coefficient. More precisely, this means in our

case that the high-frequency renormalization is carried out PPy — Iy

by the Stratonovich term in the functidn Once this term is 0=D—5 +v(en) 5~ +h(do). (10)
explicitly extracted, the remainder is an Itoultiplicative

noise. Then the high-frequency components of this term argpjs is the eigenvalue problem that gives the renormalized
irrelevant and can be averaged out, while the lOW'frequenCY/elocityu_in the 1D problem as obtained in Refd2,13

components will be responsible for the roughening of th ote that this equation does contain noise effects through the

front at scales larger than the coarse-graining length. In the. " - o . .
case of 1D fronts, the resulting diffusion coefficient for theﬁlgh frequency renormgllzann 'pEdeed by the Stratonovich
term. In fact, the effective velocity(e,) resulting from Eq.

front wandering was rederived rigorously in REf5]. Un- o . .
fortunately, the identification of the collective variable in 1D (10 has contributions from all orders in the dressed noise

cannot be immediately generalized to higher dimensions, sttensity &, . An explicitly first order ine, approximation

we must still rely on a less precise formulation and check theVill be given in the Appendix. In the problem defined by Eq.

consistency with rigorous results and numerical simulation$® the curvature and fluctuations will be taken as small per-

a posteriori turbations. Hence we assume for the figicand the velocity
After the above considerations, we can make the follow2n €xpansions of the form

ing theoretical construction. We assume we have solved the _

field equations with noise without any approximation. We Br.S.1)= (1) + 5(r.s.1), (11)

now coarse-grain the fields with some local average proce-

dure, in both time and space, and use the coarse-grained

fields to define a curvilinear coordinate system based, for _ )
instance, in terms of level curves at any time. At short lengtiVh€ré¢o(r) ando(e,) are the solution of the 1D problem of

and time scales this coordinate system is smooth and, igd: (10 The termB«(s,t) is a curvature correction and
principle, we could write the full field equatiasstill with the ~ 6v(S;t) describes fluctuations. Linearizing in both perturba-
bare fieldgin these curvilinear coordinates. In the absence ofions, ¢(r,s) then satisfies

noise, an expansion in the front thickness would unambigu- o o

ously yield the terms that are dominant in the range that the 0=T8¢+(Br+ 6v) — + D —2
eikonal equation is devised for, namely, for sufficiently long ar ar
length scalegsmall curvaturesand long time scales. Terms 172 e

such as second derivativesdiand the time derivative would e oir S, (13
automatically drop out of the description. In the presence ofyhere

stochastic noise, this is not so automatic unless the fields

themselves are coarse grained so that they are also suffi- -~ .9 _ 9 oh
ciently smooth in space and time. We assume that, for the F=D—2+ (8)\)(9—4— —
coarse-grained fields, the order of the different terms in the or '
front thickness will be the same as for the deterministic case, o ) o
when such an expansion makes settsecluding pulled Tgkmg the derivative of Eq(10) with respect tor, it is a
fronts, for instance We claim that this assumption is the one Simple matter to prove that

implicit in the very idea of the existence of a stochastic ki-

nematic formulation of the front dynamics. Then, for the UO:L% (15)
coarse-grained fields, E¢p) is expected to reduce, in anal- or

ogy to the deterministic case, to

va(s,t)=v(ey)+ Bley) k(s,t)+ dv(s,t), (12

(14

is the right eigenvector df with zero eigenvalue. Due to the

PP d d non-Hermiticity of T, finding an analytic expression for the

D?‘F Dx(s.t) ar h( ¢)+v“(s't)3_r left eigenvectomn® is not trivial. Notice that, because of the
vectorial character of the field, the simple expression ob-

+e2Q(;r,s;1)=0, 9 tained in Ref[13] for scalar fields is in general not appli-

cable. Nevertheless, the corresponding eigenvector can al-
wherex is the local curvature ang, the normal velocity of ways be obtained at least numerically.
the front. This normal velocity provides the evolution of the  Now, taking Eq.(13) and performing the scalar product
curvilinear coordinates in which Eq5) takes the form of  with u®, we obtain
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K(Uo,buo)+BK(U0,UO)+81/2(U0,Q(¢0;|',S;t)) ?tly, the_ result is appealing from_the theoreticgl point of \_/i(_—:tvy
in that it separates the problem into an effective deterministic

+6v(s,t) (U, up) =0, (16)  one, where the original field equations are modified by addi-
) ) tional deterministic terms which depend on noise parameters,
where the scalar product is defined by plus an additive noise that would be the necessary one to
describe the wandering of the problem in one dimension. For

(f,g)=2 J’ drf;(r)gi(r). (17)  the renormalized one-dimensional deterministic problem,

I

therefore, the two present perturbations, curvature and noise,

Owing to the independence of the two first-order perturba—decou!OIe from each other. . .
An important point to emphasize here is the separate de-

tions (curvature and fluctuationswe get )
pendence of the result on two noise parameters, naraely,

(u%,Duy) ande, . While the renormalized velocity and the coefficient
Blex)=——F5—— (18)  of the curvature depend solely an, the effective noise
(U% o) intensity D; depends separately on both. This clearly illus-

trates how the ultraviolet cutoff is an additional parameter of
the problem when the noise is multiplicative, corresponding
llz(uo,ﬂ( &o;r,Sit)) to the fact that the continuum limit is not well defined for
e . (19 noise &-function correlated in space. It is also important to
remark that our derivation procedure is expected to be valid

The stochastic procesd9) is not white since the high- for small noise intensitye, but contains all orders i, .
frequency components @ have been integrated out by the This was already the case in the one-dimensional derivation
coarse-graining procedure. However, we can now restoref Ref. [13], where the small noise approximation was
them harmlessly by replacin@ with the original multipli-  phrased in terms of a separation of time scales. The connec-
cative white noise process. By doing this, we are modifyingtion between that scale separation, the coarse-graining pro-
the part that is not intended to be accounted for by the eikocedure, and the small noise expansion was recently clarified
nal description, while the treatment becomes simpler. Analoin Ref.[18], where a rigorous derivation of the result of Ref.
gously, once the dependence on the cutofffas been explic- [13] was presented for the case of a single-component field
itly worked out, we can take the proced®) as 5-function ~ in one dimension, in terms of suitable projection techniques.
correlated in space. We will explicitly check the limit of Unfortunately, that rigorous derivation is based on the iden-
validity of the eikonal description here proposed when scaledfication of a specific collective coordinate, which has no
comparable to the front thickness are reached, in the sectiogémple extension to higher dimensions. Nevertheless, the fact
below. that this approximate procedure has proved correct in 1D
The resulting stochastic eikonal equation with the explicitgives further support to our main result above, which is not

dependence on the original noise parameters then takes thtgimed to be rigorously proved. In the following sections
form we will check this prediction against analytical results and

numerical simulations of the full reaction-diffusion equations
vn(S,t)=v_(8>\)+B(SA)K(S,t)-I— Dflfz(s,gk)g(s,t) , in explicit examples. We will see that the dependence on the
(200  cutoff A is essential not only for a quantitative description of
o the problem, but also to predict nontrivial phenomena such
wherev(e,) is defined by Eq(10), 8(e,) is given by Eq. as the transition to pulled fronts, in which the whole eikonal
(18), and the nois€/(s,t) is a zero mean Gaussian white description fails. This failure of the present description is
process with signaled by the vanishing of the effective noise intenBity
when that point is reached. In fa@; is linear ine to lowest
({(s,0){(s,t"))=28(s—s")o(t—t"), (21)  order, but has a complicated dependence: pnAs we will
) o ) ) explicitly see, the partial resummation of orderseip cap-
which follows from the statistical properties 6f with tures important physical features of the problem. For in-
stance, it allows the nonmonotonic dependence and eventual
j dr, U?UJ(O)gi(d’o)gj(@bo) vanishing of the front diffusion coefficierD;. We expect
] the pushed-pulled transition to occur exactly at this point.
Di(e.en)=¢ (U0, ug)2 - (22 Another qualitative change captured by the above resumma-
o tion is the destruction of the front itself, associated with the

Note that the dependence Bf; on the dressed noise inten- fact that the front thickness may diverge in some circum-
sity e, comes from the dependence on the same quantity gitances. This phenomenon is signaled by a divergenty of

&, (and hence ofi, andu®) as the solution of the renormal- at some finite value of,, .
ized problem of Eq(10). Although the predictions above are expected to be correct

The above equations constitute the main result of the firsfor €x~1 as long ag<1, in practice this may be limited by
part of the paper. Although the derivation is not rigorousthe fact thatv(e,) and the Goldstone modes are not in gen-
because the coarse graining could not be carried out explieral analytically known. In this case one can rely on numeri-

and

ov(st)=

(uoin)
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evant nonlinear terms in the renormalization grotRG)
sense, we then recover the KPZ equation

= oh a2h+7\(ah 2+ (x,1) 03

\ w A -

<I> \\“\mlm ‘ N
‘m“ R0 ‘o‘ \.N\ \\\‘;\\ """'6 e "

(X, (X' 1)) =2Dypz0(x—x")S(t—t").  (24)

The KPZ parameters turn out to be related to the eikonal
ones as

U.

FIG. 1. An example of a noisy front with a level curve that

defines the precise location of the front. Dkpz=Dt, v=B, A= (29

cal resolutions of the eigenvalue problem posed by(EQ),
or alternatively one can find(e,) as a systematic expansion

in powers ofe, as described in the Appendix. On the other

hand, it is worth remarking thaé can be a nontrivial func-
tion of ¢, only for multicomponent fields, that is, for pulses.
For one-component field&ronts) the coefficientB is not

In the special case af=0, the EW equation is obtained,

dh a2h+ x.0
=V X1 ’
Ix? H

at 26

with

renormalized by noise. AR , ,
We remark t%at this derivation is meaningful only when (u(x,Du(x',t"))=2Dgwd(X—x") 8(t—t"),
pulses are involved or, in the case of fronts, when the rel; 4 again
evant dynamical regime is the pushed one. In Sec. V of this
paper, we shall give more details about the main differences v=B.
between pushed and pulled fronts, and about their different
responses to noise. For the time being, we point out that th€hese equations are well known to be the paradigm for many
lack of time-scale separation between the relaxation of thélifferent growth processg83,34]. Even if the microscopic
zero mode and the other eigenmodes of the spectral operatdynamics of the system under study may correspond to dif-
for pulled fronts prevents us in general from constructing aferent equations of motion for the respective interfaces or
local equation for the interface motidr29]. Examples of surfaces, nevertheless the KPZ and EW equations do capture
reaction-diffusion systems that do not admit local kinematicthe universal features of the system, namely, the scaling
descriptions are the phase-field formulations of solidificationproperties of fluctuations.
[30,4Q or viscous fingerind32]. In those cases a nonlocal  Usually, such effective equations cannot be derived from
interface equation does exist so an extension of our derivathe original microscopic description of the particular systems
tion is in principle feasible. This may be particularly inter- and are introduced on a phenomenological basis, relying on
esting in cases such as those in Rp4€,32 where the rel- the claim of universality within a RG framework. Nonuni-
evant fluctuations may be external. versal quantities such as prefactors of scaling functions, af-
fected, for instance, by the noise intensity in the interface
equation, cannot be derived. In our case, we are able to com-
pute the noise intensity in the eikonal equation so we can
also predict the nonuniversal prefactors if the noise is known
In the previous section, we derived a stochastic sharp inat the reaction-diffusion level of description. For instance,
terface approximation for a generic reaction-diffusiétD) not only can the scaling of the interface roughness with sys-
system with multiplicative noise. A pictorial description of a tem size be predicted, but also the actual values of average
noisy front is given in Fig. 1. We see in this figure that noiseinterface roughness in terms of the original microscopic pa-
in the RD system induces fluctuations in the front shape, thusameters of the RD model are worked out.
generating roughening of the sharp interface that should As a test of our derivation we will now check consistency
emerge at the eikonal level of description. The identificationwith equilibrium fluctuation theory. The connection between
of universality classes of kinetic roughening will come natu-bulk thermal fluctuations and fluctuations of the interface
rally at this level of description. In particular, we will estab- between thermodynamical phases can be established rigor-
lish the connection with the universality classes defined byusly in the case of equilibrium fluctuations. This is possible
the Kardar-Parisi-Zhang equatidi35] and the Edwards- because a free-energy functional does exist and the sharp-
Wilkinson (EW) equation[45]. interface limit can be performed at the level of the free en-
The stochastic eikonal equati¢?0) is written in intrinsic,  ergy itself. Then, the fluctuations can be obtained indepen-
rotation invariant form. For the purposes of scaling theory itdently from the free energy at each level of description
is convenient to write it in Cartesian coordinates. The front(either bulk or interface fluctuationsconsistently with the
location is then given ag=h(x,t). Retaining only the rel- fluctuation-dissipation theorem. The important difference

(27)

Dew=Dy, (29

Ill. KINETIC ROUGHENING AND CONNECTION
TO EQUILIBRIUM FLUCTUATIONS
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here is that no dynamical equation must be invoked, but only oh\2
equilibrium properties. On the contrary, in the more general F|=0J dx\/ 1+ &_x) , (35
case where there is no fluctuation-dissipation theorem and

not even a free-energy functional, we must rely on dynamicalyhere the parameter is identified as the interfacial tension

equations. In the case of equilibrium fluctuations, hovyeverand can be evaluated from the bulk free energy of the system
we must reproduce the known correct result. As we will S€§37] as

below, this case falls in the EW universality class.
The general solution of the EW equation, Eg6€), is Df q (&q&o)z
o= X —

known [34]. Consider the interfacl(x,t) and its discrete pw (36)

Fourier transfornﬁq(t), defined through
where ¢ is the corresponding kink solution. For sdfbng
wavelength deformations of the interface, the excess free

h(x,t)=§ hy(t)exp(igx). (29 energy reads
2
It is possible to show34] that the long time limit of the AF|~E dx ﬂ) 37)
spectrumS(q,t)=(|ﬁq(t)|2) is given by the expression 2 ax/
1D and the corresponding stationary spectrum of fluctuations,
limS(q,t)=— —EwW (30) consistent with the fluctuation-dissipation theorem, takes the
T L »g? form [37]
Our strategy now will be to calculate explicitly the spectrum . ke T
- - ; . 2 B
(30) in terms of the coefficients predicted for our eikonal <|hq| )= (38

>
equation, and then show that the resulting expression coin- Log

cide_s_ with the inde_pendent result that can be obtained_f_rorwsing Eq.(36), this expression yields the same result as Eq.
equilibrium fluctuation theory. Hence we insert an add|t|ve(34)_ This proves that the front roughening obtained from our

noise in the original RD system, that is, in settigg 1, derivation is exact in the case of equilibrium fluctuations,
& and by extension in the additive noise case. We have shown
— =DV2¢p+F(p)+ep(x,t), (31  this for the case of a nonconserved order parameter, for
at which the connection between the microscofl&ing-like)
with and sharp-interface levels of description is indeed well estab-

lished. In the conserved casmodel B of Ref.[36]), the
(p( D) (X 1)) =28(x—Xx") 8(t—t'). (32) projec_tion to a sharp-int_erface (_jescription_ y_ields a nonlocal
equation and therefore lies outside the validity of our theory.
We consider arF(¢) with a Symmetric double-well form, Similarly, equilibrium fluctuations have also been studied in
i.e., the deterministic part of E¢31) has a 1D solution with both sharp-interfacg38] and phase-fiel@39,40 formulation
zero velocityg= ¢o(x). This corresponds to the usual time- i the context of solidification, which also yields nonlocal
dependent Gizburg_Landau Langevin equation for a noncodnterface dynamiCS. The Universality classes in those cases
served order parametémodel A in the Hohenberg-Halperin are not well established.
classification[36]), where noise intensity must be identified
ase=kgT. Sinceg=1, our expression for the noise intensity IV. APPLICATION TO A PROTOTYPE MODEL OF FRONT
at the sharp interface level takes the simpler form PROPAGATION

. To illustrate our general theory we consider here as an

D= , (33) example the propagation of a scalar front
f dX(d ol IX)? ¢
- E=DV2¢+ F(¢.a)+e" ()7, (39
which, according to Eq(30) and performing the identifica-
tions of Eq.(28) with =D, produces with the noise correlator defined as in Eg). We specify our
prototype model through the following definitions:
lim (|hy(t)|?) = - —. (39 F(¢)=¢(1-¢)(¢+a), (40)
toe LDJ dx(dpo/ax)2 9
o (P =d(1-¢), (41

On the other hand, we can take the sharp-interface limit oAnd we will consider a front of theéé=1 state invading the
the free Ginzburg-Landau free energy. The calculation isp=0 one. The constar# is a control parameter. As is well
standardsee, for instance, Reff37]) and yields the interface  known for fronts without fluctuations, the deterministic force
free energy given by Eq.(40) leads to different modes of front propaga-
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tion depending on the value af[2]. The front velocity also ' ' ' ' ' '
depends ora. The choice of the coupling functio@1) for

the multiplicative noise term of Eq39) is the simplest one

that preserves the stationary statles 0 and¢=1. The fact 1
that the noise term vanishes in the two asymptotic states
prevents nucleation phenomena in the invaded state. The
form of g(¢) is also such that the multiplicative noise term >
arises naturally as the fluctuation of the control parameter
Moreover, for the prototype model here proposed, the corre- 03|
sponding functiorh(¢) defined in Eq(6) which appears in

the renormalized equation takes the same functional form as
f(¢), only with renormalized coefficients. This allows a sim-

pler analytical treatment and intepretation of the results. 0 . ! . ! . | .
0 50 100 150 200

t

A. The 1D case revisited

This prototype model has already been analyzed for 1D i FIG. 2. Change with\ of the average renormalized velocity.

. . o Values of the parameters a@e=0.1, £¢=0.1, A=1,5. The theoret-
Refs.[12,13, where in the regime-¢,<a<1/2—s, it is ical values of the corresponding average velocities from (Eg),

shown to result in a renormalized average velocity 0.948 and 0.866, are also plotted.
— 2a+l (42) microscopic cutofix of the noise, even though this length is
V2(1-2¢,) significantly smaller than the front thickness, of the order of
25, in the same units.
and in the diffusion coefficient Regarding the diffusion coefficiei@3), we measured the

mean square displacement of the front position. If we define
the front position as

| deeidagraergroo)

Di=¢ —. (43) Z(t)=fdx¢(x,t), (45

| deertiaoras®

then the diffusion coefficient43) is related to the mean

square displacement
Here ¢, is the solution of the zeroth-order equation:

A= \(z%)—(2)* (46)
2
%-ﬁ-;ddi;-l—h(gbo):a (ag)  as
¢ A%(t)~2Dst. (47)

Notice the dependence of both these quantitied dnrough
the e, parameter. Specifically about the diffusion coefficient
the first order dependence énis apparent, while the func-
tions present in the integral and defined through e 100
contain all orders irg, . This is in contrast to the renormal- E
ized velocity, which depends solely @y . This means that
bothe and\ can be determined independently from separate Fo|--
measurements of both the ballistic and the diffusive compo- -
nents of the front propagation. This is quite remarkable since | [~
it provides indirect means of measurement of thacro- =
scopig noise, which may not be directly accessible in many <
cases.

As an illustrative and well-controlled example, we have

In Fig. 3 the quantityA(t) is plotted. The values of the
'parameters are the same as in Fig. 2, while the values of

-3
~

e at
[ ]
P ()t
K=

,,,,,,,
- =

=
©

explicitly tested the prediction of the dependence omf e

both velocity and diffusion coefficient with direct numerical 0.1 ~2* E
simulation of the RD equation. The first set of results is o” ]
shown in Fig. 2. Here data from a simulation of the RD 1 o -1'0 e 'i(l)o
equation with the reaction teri@0) are reported and com- t

pared with the theoretical predictidd2) for two different
values ofA=1 andA =5, in some dimensionless units of the  FIG. 3. Change with\ of the diffusion coefficient for the front
simulation. Notice that the result is indeed sensitive to thevandering in 1D. Parameters have the same values as in Fig. 2.

056116-8



KINEMATIC REDUCTION OF REACTION-DIFFUSION . .. PHYSICAL REVIEW 65 056116

run from 1 to 15. The diffusive behavior and the dependence Now, in order to calculatd;, we need to specify the

on the value o\ are manifest. solution of the 1D model. This is known and far= —1/2 is
In this particular case of 1D, a more systematic derivatiorgiven by

of the diffusion coefficient has been reported in R&b]. By

proper identification of the natural collective variable which 1 1

describes the front wandering as striothot just asymptoti- ¢0=§(1—tanrkx), k= m (51)

cally) diffusive, it has been shown that, in fact, the result first

found in Ref.[13] is rigorous to first order ire. Together gng

with the case of equilibrium fluctuations, this is the second

rigorous test of our general theory. 0 deg

u =U0=W. (52)

B. The 2D case
The integral in Eq(50) can then be computed exactly and

Let us now consider the propagation of a front in thegives

prototype model of Eq439), (40), and(41) in 2D. We have
already shown that in two dimensions the eikonal equation 9 >

reduces to either the EW equation or the KPZ equation, de- Di=e-=\ [ = (53
pending on whether the velocity of a planar front is zero or 35 V1-2¢/N\?

nonzero, respectively. In order to make a numerical check of ) _

our theory we consider then the simplest case of zero velocthe above result clearly illustrates the different treatment of
ity, with expected EW scaling. This case corresponds to théhe parameters ande/\?. The result is first order ie and
choicea= —1/2 in Eq.(40). As seen explicitly in Eq(42) it contains all orders iB/\?. It is interesting to remark that the
turns out that the renormalized velocity is also zero, since th@artial resummation of all orders i captures important
noise does not break the symmetry associated with thBonperturbative phenomena. For instance, the divergence of
double-well form of the deterministic potential. It is impor- Df at e/A\?=1/2 reflects the fact that at this point the front
tant to remark that, unlike the Ginzburg-Landau model disdtself is destroyed, or, equivalently, the front thickness be-
cussed in Sec. Il for the equilibrium case, the noise is nowgomes infinite. This is equivalent to reaching a critical point,
multiplicative, and no fluctuation-dissipation theorem can beexcept that this is not the equilibrium one because the noise
invoked. Hence the first-principles derivation of the fluctua-is multiplicative. Remarkably, our result for the additive
tion spectrum in the sharp-interface description is no longepoise case does not capture that feature because it is only

available. We thus rely on the dynamical equation first order in the noise strength. In the case with an asym-
metric double-well potential, which has a finite front veloc-
d¢

o2 1 12 ity, it was explicitly checked numerically in Rgf13] that the
ot DV ¢+ (1= ¢)(¢—2)+e“d(1- ) n(x1), (48  iffusion coefficient of the front has a nonmonotonic depen-
dence ore/\?. Most importantly, it vanishes at a finite value

where the noise; is defined through the usual correlator of Of &/A* that corresponds exactly to the point where the front

Eq. (2). reaches the pushed-pulled transition. Again we see thgt the
Now, our basic goal is to connect this level of descriptionfeSummation of orders/\? captures important physical in-

with the eikonal level, determining thereby the noise correcformation(see the discussion in Sec).V

tions to this equation. Therefore we assume a stochastic ej- e now come back to the numerical test of the EW scal-

konal equation of the form ing of our particular symmetric case, with the identification
(28). Accordingly, we can rewrite the complete power spec-
— _ Bx+D2 trum as it is known theoreticallf34] in terms of the coeffi-
on(S) P+ DS, cients that we just calculated, and compare it with data from
o , ) a direct simulation of the field model E¢8).
(L(s,){(s',1'))=25(s—s")8(t—t"), (49) From[34] the power spectrurs reads
where the coefficientg andD; are given by 1 Dgy
S(g,t)=— —[1—exp —2vg?)]. (54)
L qu
f dxulueg?( éo) . o . .
_ -~ In terms of the parameters in the original field equation this
ﬁ_ Dv Df - 0 . (50) .
(u%,ug)? yields
Notice that we have directly taken into account that the bare _ 1Dy 2
1) =———=[1—exp—2Dqgt)], 55
as well as the noise-renormalized velocities are both zero S(a.t) L DqZ[ XM a°0] (59

(see, for exampld,13]). Also notice that the renormalization

of the curvature term is absent for battande, expansions whereDy is given by Eq.(53). Accordingly, the fluctuations
due to the fact that we are now dealing with a frobt ( of the front position in the RD model Eq39) for length
=1). scales larger than the front thickness itself must obey the
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FIG. 4. Numerical data from 2D simulation of the RD field FIG. 5. Numerical data from 2D simulation of the RD field
equations for the prototype model with=—1/2 and analytical equations for the prototype model with=—1/2 and analytical
prediction for the power spectrufd5) in the scaling region. The prediction for the power spectru(B5). The three sets of data points
time here is 1000, and the parameters of the simulationLare refer to times 50, 250, and 500. The parameters of the simulation
=100, e=5, A=5. areL=500, e=1, A=2. The value ofg, corresponds to a wave-

length of the order of the front thickness. The analytical prediction
spectrum defined by E@55). It is worth remarking that the is intended only forg<g.
prediction is not only for the universal features, namely, the
shape of the scaling function and the exponents, but for thelusive given the practical difficulties in already reaching the
actual absolute values of the spectrum. We have performestaling regime at the eikonal level of descripti@6].
simulations of the field RD model with a correlator of the From a practical point of view it is to be remarked that the
form noise intensity cannot be increased arbitrarily in a simulation
without destroying the front itself. This can be easily seen in

1 I a numerical simulation. Although the noise vanishes asymp-

(n(x,t)n(x",t"))= P(l—|x—x’|/)\)(1—|y—y’|/)\) totically in the stationary state¢=0 and =1, if noise is
sufficiently strong it may be capable of nucleating the other
XO(1—|x—x"|/\) state in the region not too far from the front. We have found

that this effect is more pronounced in the region behind the
XO(1-|y=y'|l/N)s(t=t').  (56)  frontp=1. For a giver\ there will typically be a maximum
) . i . value ofe after which the front is essentially destroyed. If
This corresponds to assuming that at any time the noise takggs increase the effect is milder. In order to make the front
the same value in a square of siguncorrelated with the  oyghening appreciable in not too large system sizes, it is
neighboring squares. This is done for simplicity but no sig-thus convenient to have a moderately laxgevhich in turn
nificant dependence is expected on the details of the shape @f|| aliow larger values ofe. Typical values that we have
the spatial correlation provided is kept smaller than the gnsidered are in the range of=2,5 in units for which the

front thickness. _ _ front thickness is of the order of 25.
We have studied the fluctuations of the internal level

curve of the front¢p=1/2. In Fig. 4 we show the scaling
region, with the correct slope and location of the curve. More V. THE PUSHED-PULLED TRANSITION
remarkably, Fig. 5 shows the measured spectra for the simu-
lation of the field equations compared to the prediction given As we have mentioned, two classes of fronts must be
by Eq. (55. It should be stressed that in this comparisondistinguished from a dynamical point of view, the so-called
there is no free parameter. It is also interesting to observe theushed and pulled fron{g},29]. The simplest is the pushed
deviations from the prediction at length scales smaller thamase, in which the front propagation depends on the full non-
the front thickness. In this high-region the data also col- linear structure of the equation of motion and the front is said
lapse but not to EW scaling. An estimate of the exporent to be “pushed” by its internal part. This is usually the case
in this region is around 3/2. when the invaded state is locally stable. On the contrary, if
For values ofa such that the front has a finite velocity, the invaded state is unstable, it can happen that the relevant
one would expect that the scaling would be given by that ofdynamics takes place in the semi-infinite leading edge region
the KPZ universality class. Although the scaling function inahead of the front itself. Then the propagation of the front is
that case is not exactly known, the prediction of our eikonalgoverned by the growth and spreading of linear perturbations
equation is expected to fit the data for the corresponding RIn that region, which “pull” the front. In this case the linear-
model also without free parameters. We have not checkeitation about the unstable state accounts for its dynamical
this case because it is obviously more involved and less corbehavior[4], but there is degeneracy of propagating veloci-

056116-10



KINEMATIC REDUCTION OF REACTION-DIFFUSION . .. PHYSICAL REVIEW E65 056116

' T ' T fective noise intensity, . Once more the dynamical impor-
tance of the noise correlation length in the long wave-
length behavior of the front is remarkable. The same effect
should be expected in 2D, namely, the scaling could be KPZ
or non-KPZ depending solely on noise parameters. To our
knowledge, this is the first time that such a dramatic effect of
noise has been reported. Remarkably enough, while our ei-
konal description is not able to describe the second regime, it
does predict the transition at the right values of the param-

eters.
VI. DISCUSSION AND CONCLUSIONS
L L L Lo | \ L T T
o 100 The formulation in terms of kinematic eikonal-like equa-
t tions provides a useful framework for studying front or pulse

FIG. 6. The pushed-pulled transition in 1D. The system size ig°roPagation when one is interested in long spatial and tem-

L =2000 and averages have been carried out on 3600 realizations BPral scales. This kind of equation has advantages both for
noise in the pulled case and about 1000 in the pushed one. numerical simulations and for theoretical analysis, and has

fruitfully been used, for instance, in the phenomenological

ties[2]. In the present context, the most important distinctionmodeling of excitable wave propagation in disordered and
between the two situations is that, while for pushed fronts the,oisy media, by thed hocprocedure of adding fluctuations
relaxation of bulk modes is exponential, for pulled fronts it isto a generic eikonal equation. In this paper we have derived
algebraic, as a result of the fact that the linearized operatoftochastic eikonal equations from the more microscopic RD
describing perturbations around the stationary propagatinfleld equations with noise, which can be multiplicative.
mode is gapless. This means that for pulled fronts there is N0 The derivation presented here relies on the hypothesis of
natural time-scale separation which allows for the decouseparation of scales between the front dynamics at large
pling of the interface modes from the bulk ones. Our derivascales and the internal degrees of freedom of the front. This
tion, and the whole idea of a kinematic moving-boundarymeans that it is not valid for pulled fronts, which are indeed
approximation, is not valid for pulled fronf29]. Neverthe-  known not to have a local, eikonal-like description even in
less, we will show that our theory does correctly predict itsthe absence of noise. However, even for the pushed case, the
failure at the pushed-pulled transition. usual projection techniques for derivation of sharp-interface

The intrinsic differences between pushed and pulledequations cannot be simply extended to the stochastic case
fronts also show dramatically in the statistics of fluctuations.due to the fact that the noise contains the full range of length
In 1D, for instance, the front wandering turns from diffusive and time scales. Hence our derivation is formulated within a
(pushed fronts to subdiffusive (pulled frontg [13,15. In coarse-graining scheme, which we claim makes sense for the
turn, pulled fronts in 2D with multiplicative noise have been kind of problems that admit a local, eikonal-like equation.
found to belong to a different universality class from the pDerivation of sharp-interface approximations with noise has
ordinary KPZ on€ 16,17, as opposed to the KPZ scaling of peen possible so far for thermal noise only, in systems with
pushed fronts. local equilibrium. For multiplicative, generically external

In Ref. [13] it was already observed that the diffusion noise, however, the absence of a free energy and a
coefficient of fronts in 1D was a nonmonotonic function of fluctuation-dissipation theorem require an alternative scheme
e/\ which vanished at a finite value of that parameter. Afterhased on dynamical equations. We have explicitly checked
that point, subdiffusive behavior was found. The picture washat our scheme is exact for the cases of equilibrium fluctua-
confirmed and completed in R¢1L5]. Here we want to stress  tions and also reproduces a rigorous result for multiplicative
that the point where that transition occurs correspoexis noise in 1D. For the general case, however, we rely on nu-
actly to the pushed-pulled transition. In fact, the renormal-merical tests to fully justify its validity. In any case, the
ized equation defined by Eq5) for the prototype model excellent agreement with numerical and analytical tests
takes the same form as the original one, with renormalizedlearly suggests that a more rigorous derivation should be
coefficients. The deterministic equation has the transition tgossible. An extension of our procedure is also conceivable
the pulled regime aa= 1/2. The same transition in the renor- in RD systems for which a nonlocal sharp-interface descrip-
malized equation occurs @=1/2 wherea=a+¢,. It is  tion exists, for instance, in solidification or viscous fingering.
thus clear that, for parameter values of the deterministic One of the main points of this paper has been to clarify
equation in the pushed regime, increasing noise intensity the role of the spatial cutoff of noise correlationsOn the
or decreasing. will imply a transition to the pulled regime. basis of recent rigorous mathematical findings on the spa-
While the front velocity will not experience any dramatic tiotemporal white noise limit, we have argued and shown in
effect, the fluctuationgwandering in 1D or roughening in explicit examples that the common splitting of the Stratonov-
2D) will be dramatically affected, since the universality classich white noise into a term which is singularas-0 plus an
will change. In Fig. 6 we show the change from diffusive to Itd noise does capture the correct dependenck of mac-
subdiffusive behavior induced solely by a change in the efroscopic quantitiegsat scales much larger thar). The re-
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maining spatially correlated Ttnoise will carry only a weak rameters of the noise. Although this is not a systematic deri-
dependence oR, noticeable at length scales of the order ofvation, we have presented a wealth of independent evidence
\, and can be treated perturbatively. The>0 limit can thus  of the validity of our results both from analytical calculations
be taken Safe|y for the remainingA lhwise, once the Singu|ar and from numerical simulations of different Systems and
part has been extracted. Within this scheme, macroscopl@oking at distinct noise effects, both qualitative and quanti-
quantities such as the front velocity or front rougheningtative. These results should be of interest for theoretical and
properties depend separately on the noise strengthd on ~ Practical purposes both in the study of kinetic roughening
e/\Y. Incidentally, this implies the possibility of measuring @nd in the context of propagation of chemical waves.
the (microscopi¢ noise parameters and\ from the macro-
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the results presented here one can predict roughening prop-

erties of noisy pulses or fronts appearing in field equations. APPENDIX: SYSTEMATIC EXPANSION

We have used this correspondence to check the predictions in |n some circumstances, the eigenvalue problem defined

the case of zero velocity and additive noise, for which theyy Eq.(10) may not be solvable analytically, due to the func-
general theory of equilibrium fluctuations can be directly ap-tional form ofh(¢,), which has been renormalized by noise,
plied to the RD equation. Analytical results obtained for thegyen though the “bare” problem may be solvable. In such
corresponding(Edwards-Wilkinson eikonal equation are -ggeg it may be useful to solve for the case0 (no noisg
i(_jentical (including prefactorsto that independent calcula- 544 optain corrections in a systematic expansios. ifihis is
tion for the RD system. the aim of this appendix.

_We have also applied our results to a prototype model | ot ys consider then the zero-noise eigenvalue problem
with multiplicative noise constructed to represent a variety ofyefined by the(deterministid 1D equation

different front propagation regimes by changing a single con-

trol parameter. While this model has already been used to Py Iy

study the effects of noise on 1D fronts, we have addressed O=D—2+vo—+f(¢p). (A1)
here a more specific 2D effect, the case of front roughening. ar o

In the zero-velocity case, simulations of the reaction- . .
diffusion equation presented very good agreement with thd/e NoW expand the fields of the noisy 2D problem of &.

predictions of roughening for the corresponding EW equa-as perturbations ie and « of the solution of Eq(AL):
tion with no adjustable parameter. The results show that the

: o . v = +
dependence om is quantitatively important even ik is Br.S,0)=p(r) +I¢(r,s.0), (A2)
significantly smaller than the front thickness, which may _
seem counterintuitive. Although we have not checked the vn(S,)=votast Br(s,0)+dv(s,D). (A3)
analogous results for a nonzero velocity, which would correyye get at the linear order
spond to the KPZ equation, we expect our results to be valid

also in this case. . ddp
Most interestingly we have explicitly checked the predic- 0=Lo6¢p+eG(¢p) +(ae+ Bk+ dv)— =
tion of qualitative changes as/\Y is varied, such as the
transition from pushed to pulled propagation regimes. We ~ ddp
have directly observed the change in the wandering exponent +Dk— =+ Q(pir.si), (Ad)

in 1D as\ is decreased. The immediate extension of this
result implies that a transition from KPZ to non-KPZ scaling where
is to be expected in higher dimensions. We thus conclude

that the dependence on the spatial cutoff of the noise may P 9 of

have dramatic effects, not only on the nonuniversal quanti- FO=D—2~|—vO— — . (A5)
: - ar ar - ad| ,_

ties but also on the universal ones. 9=op

In summary, we have derived stochastic eikonal equations .
from stochastic RD equations completely specifying the paNow the right eigenvector df, reads
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ddp u® Q(pp:ir,s:t
Uo)= (A6) Sv(s,t)=— 31’2( (g;ﬁp ) . (A9)
(U™, u(gy)
which is independent of both andk. Taking Eqs(A4) and . oo
performing the scalar product with the left eigenveaid?, The stochastic eikonal equation is now
we get vn(S ) =vo+ae+ Br(s,)+D¥e)¢(st), (ALO)
0) B (0)
K(U™, Duggy) (e + BK) (U, Ugo)) where the nois€(s,t) is a zero-mean Gaussian white pro-
+e(U,G(¢p))+ AU Q(Ppir si1)) cess with
+0v(s,t) (U, ugp) =0. (A7) (L(s,1)L(s't)=28(s—s")s(t—t") (A1)

As curvature and fluctuations are linear perturbations we gef;q

(U®,G(¢p)) (u®,Du))
T WO T WO AY J dr2; uPujo)0(¢0)g;(#p)
Di(e)=c¢ . (A12)
and (U(O),U(O))2
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