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Kinematic reduction of reaction-diffusion fronts with multiplicative noise:
Derivation of stochastic sharp-interface equations
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We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the
presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field
equations and the kinematic~eikonal! description in terms of a stochastic moving-boundary or sharp-interface
approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in
the original field equations, to first order in noise strength, but including a partial resummation to all orders
which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the
noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts,
affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift
of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise
parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the
quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughen-
ing. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are
successfully tested against rigorous results and show excellent agreement with numerical simulations of
reaction-diffusion field equations with multiplicative noise.
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I. INTRODUCTION

The dynamics of localized solutions in the form of fron
or pulses in reaction-diffusion systems has received a g
deal of attention for a long time in the context of noneq
librium extended systems@1#. Examples of fronts formed by
stable regions invading unstable or metastable ones
found in a large variety of physical, chemical, or biologic
systems, and have been studied in great detail@2–4#. In the
context of excitable media and chemical waves, exten
pulses do also exhibit a rich phenomenology@5–9#. As op-
posed to fronts, excitation waves or pulses are such tha
region behind them eventually returns to the same line
stable state that is ahead. In this case, in dimensions hi
than one there may be open ends of the pulse region that
rise to spiral@two-dimensional~2D!# or scroll ~3D! waves.
There has been much interest in the study of such obj
from the fundamental point of view of pattern forming d
namics, but also because of their potential applications
biological systems, such as in cardiac tissue@10#. In this
paper we will not consider the case of open ends, so un
otherwise specified, we will refer to fronts and pulses wi
out distinction under the common term of ‘‘fronts.’’

One aspect that has received increasing interest in re
years has been the effect of fluctuations of both internal
external origin on the dynamics and the roughening prop
ties of fronts@11–19#. More recently, the effect of noise i
pattern forming dynamics of chemical waves has been
tered by the development of the experimental capability
introducing external spatiotemporal noise in a controlled w
1063-651X/2002/65~5!/056116~14!/$20.00 65 0561
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in different photosensitive nonlinear chemical reactio
through the optical projection of computer-designed s
tiotemporal fluctuations in the local illumination condition
acting as a stochastic control parameter@20–23#. From a
theoretical point of view, a common starting point to stu
fluctuations is in terms of master equations defining the e
lution of reacting and diffusing particles in a lattice@11#. The
connection of this microscopic level of description to t
mesoscopic one in terms of Langevin field equations
proved a rather subtle issue, in connection with the disti
tion of the so-called pushed vs pulled fronts@4#. Only re-
cently has a complete understanding of the instrinsically
ferent nature of these two types of front, and t
corresponding consequences concerning the presence o
offs @24–27# and the effects of fluctuations, started to eme
@12,13,15–17#. It has been shown, for instance, that pull
fronts define a universality class of kinetic roughening d
ferent from the Kardar-Parisi-Zhang~KPZ! universality class
@16,17#. On the other hand, it has been shown that intrin
noise at the microscopic level may induce a morphologi
instability at the macroscopic level of description@14#. In
this paper we will be mostly concerned with the macrosco
description of pushed fronts with fluctuations, but also w
how this description incorporates the transition to pull
fronts induced by the noise itself.

In the absence of noise, and in the appropriate limit,
description of fronts and pulses defined by reaction-diffus
field equations can be reduced by means of a moving bou
ary approximation to a kinematic description in terms
much simpler local equations@9,28#. This procedure, which
is mathematically well grounded in the framework of th
©2002 The American Physical Society16-1
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so-called inertial manifold reduction, can be carried out s
tematically, for instance, through asymptotic matching te
niques using the front thickness as a small parameter d
ing a singular perturbation problem@29#. This is commonly
used to relate macroscopic interface equations to or
parameter or phase-field descriptions in many problems
volving interface dynamics, such as solidification@30,31#,
viscous fingering@32#, etc. In the case of chemical pulses
excitable media in the limit of weak excitability, this leads
a local equation where the normal velocity of the pulse i
constant plus a correction proportional to curvature@9#. This
is often called the eikonal equation. In the case of open e
a similar local equation can be derived for the motion of
end point of the pulse@9,28#. For pushed fronts it can b
shown that for smooth, long wavelength deformations of
front, the separation of time scales between the soft de
mation modes and the internal degrees of freedom of
fields leads naturally to the same eikonal equation.
pulled fronts, however, this separation of time scales d
not exist, the relaxation being algebraic instead of expon
tial, and a local moving-boundary approximation is not ju
tified @29#.

The kinematic description in terms of eikonal-like equ
tions is a very useful approximation from both a theoreti
and a practical point of view. In the context of the study
universality of fluctuation properties@33,34# for instance, it
leads naturally to the relevant effective universal descript
of a broad class of systems in terms of the KPZ equa
@35#. It is also very useful for numerical simulation purpose
since it avoids resolving the fine structure of the front and
bulk degrees of freedom, which become irrelevant, dea
only with the kinematic degrees of freedom of an object
reduced dimension.

When noise is present in the original field equations, ho
ever, the situation is not so clear. Stochastic eikonal eq
tions have proved useful in a phenomenological descrip
of the dynamics of pulses and spiral waves in photosens
chemical systems with external noise imposed on the illu
nation conditions@21,22#. Such a description, however, re
lied on some fitting parameters and some uncontrolled
potheses on the way the noise must enter the kinem
equations. These results, together with the fact that the
tistical properties of the noise present in those experime
are fully controlled, clearly call for a more ‘‘microscopic
derivation of stochastic kinematic equations correspond
to Langevin reaction-diffusion field equations with multip
cative noise, with no free parameters. The connection
tween bulk and interface fluctuations has been worked ou
far only for equilibrium fluctuations in coarse-graine
Ginzburg-Landau-like equations@36–39#. In such cases, the
sharp-interface limit can be taken at the level of the f
energy, and the existence of a fluctuation-dissipation theo
then yields the proper way to incorporate thermal fluct
tions into the effective interface equations. However,
many nonequilibrium systems, for instance in the contex
reaction-diffusion problems, a free-energy or generically
Liapunov functional may not exist and no fluctuatio
dissipation relation may be invoked for external noise.
such cases the connection between the bulk description
05611
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the effective interface description in the presence of fluct
tions must be worked out at the level of the dynamical eq
tions.

The purpose of this paper is to address this point by
riving stochastic eikonal equations, including the compl
specification of the noise statistics in connection with that
the noise in the mesoscopic field equations. In particular,
shall focus on the singular dependence on the spatial cu
when noise is multiplicative, and its importance in the qua
titative description of the statistical properties of the fro
fluctuations. The predictions will be tested against numer
simulations of reaction-diffusion equations, and also in ca
where exact results are available concerning the spectrum
interface fluctuations. We will also see that the stocha
eikonal equation derived is consistent with the scenario
the pushed-pulled transition, and that changing the spa
cutoff or the noise intensity may have effects as drastic
changing the universality class of kinetic roughening of t
front through that transition.

Although the method of obtaining the stochastic eikon
equation presented here is not a first-principles rigorous d
vation, we will provide sufficient evidence to conclude th
the result is the correct one to lowest order in noise intens
including the singular dependence on the noise correla
cutoff ~which involves a partial resummation to all orders!,
within the long time and length scale limits which are inhe
ent to the kinematic description itself. However, it does n
apply to situations in which the front dynamics is nonloc
such as solidification fronts or viscous fingers, where a d
ferent type of formulation is appropriate even in the det
ministic case@30–32,40#.

II. KINEMATIC REDUCTION FOR GENERIC
REACTION-DIFFUSION SYSTEMS

Let us consider a vectorial fieldf(x,t) with N compo-
nents f(x)[f1(x), . . . ,fN(x) in a d-dimensional space
with x[x1 , . . . ,xd , which obeys a reaction-diffusion equa
tion with multiplicative noise of the form

]f

]t
5D̂¹2f1f~f!1«1/2g~f!h~x,t !, ~1!

whereh(x,t) is a Gaussian noise with zero mean and cor
lation given by

^h~x,t !h~x8,t8!&52l2dC~ ux2x8u/l!d~ t2t8!. ~2!

We take a one-component noise for simplicity, as the natu
case when it originates in fluctuations of a single cont
parameter. The generalization of the formalism to multico
ponent noise is straightforward. Notice the asymmetry w
which we treat the spatial and temporal correlators of
noise. As we will see, this reflects a nontrivial issue related
the intrinsically different nature of the white noise limit i
space as opposed to time. We have taken in Eq.~2! the noise
as d-function correlated in time. This temporal white nois
limit is well behaved, once a prescription for the multiplic
tive noise term in Eq.~1! has been chosen. For external flu
tuations the physically relevant prescription is to consider
6-2
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white noise as the limit of some properly defined correla
noise. This corresponds to the well-known Stratonovich p
scription @41#. On the other hand, the spatial noise must
ways be defined as colored, its white~uncorrelated! limit
being intrinsically ill defined. Hence the notation with th
functionl2dC(r /l) in the correlator, meaning a general co
relation function, dependent on some correlation lengthl,
which in the limitl→0 is such thatl2dC(r /l)→d(r ). The
fact that the spatial continuum limitl→0 does not exist in
the Stratonovich interpretation is thus reflected in the f
that, even ifl is much smaller than any other length scale
the problem, the existence of such a microscopic cutoff
ways shows up in the quantitative description of the la
scale behavior and cannot be reabsorbed in a redefinitio
parameters. That is, the noise cannot be considered as e
tively white in space, regardless of how small the noise c
relation length is.

The multiplicative noise term present in Eq.~1! has an
average value different from zero. Applying the Noviko
theorem@42#, we get

«1/2^g~f!h~x,t !&5«l2dC~0!^G„f!& , ~3!

where

Gi~f![(
j

]gi~f!

]f j
gj~f!. ~4!

This suggests separating the average contribution from
multiplicative noise term and rewriting Eq.~1! in terms of a
renormalized potential and a zero average noise,

]f

]t
5D̂¹2f1h~f!1«1/2V~f,x,t !, ~5!

where

h~f!5f~f!1«l2dC~0!G~f! ~6!

and

V~f,x,t !5G~f!h~x,t !2«1/2l2dC~0!G~f!. ~7!

Here the new noiseV has zero average. Notice that th
decomposition corresponds to transforming Eq.~1! into its
equivalent Itoˆ stochastic equation in the white noise lim
Accordingly, the stochastic termV reduces to

lim
l→0

V~f,x,t !5G~f!h I~x,t ! , ~8!

whereh I(x,t) is now a white noise in the Itoˆ interpretation.
The deterministic termh thus includes noise effects throug
the so-called Stratonovich term that has been addedf.
These noise effects on the deterministic part of Eq.~5! de-
pend on a ‘‘dressed’’ noise intensity«l which contains the
singular dependence on the spatial cutoff in the form of
‘‘bare’’ « as«l[«C(0)l2d. An important point is that the
spatial white noise limit in the continuum equations can o
be mathematically well defined for an Itoˆ noise. This has
been proved rigorously for relatively broad classes of eq
05611
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tions ~see, for instance, Refs.@43,44#! in one dimension. On
the contrary, this cannot be the case for a Stratonovich no
as is obvious from the singular dependence onl. The prac-
tical implications of these facts are that, while the singu
contribution ofl in the Stratonovich term must be kept e
plicitly, the dependence onl contained inV may indeed be
weak~nonsingular!, and negligible ifl is much smaller than
the other length scales in the problem, in particular the fr
thickness. This is rigorous only in one dimension, for i
stance in the case discussed in Ref.@15#. In higher dimen-
sions, a residual strong dependence of a given quantity
the cutoff l associated with the noise termV can only be
ruled out empirically, as we check in our numerical simu
tion in the sections below. Therefore, the splitting of t
Stratonovich noise by means of a deterministic term plus
Itô multiplicative noise has the virtue of isolating the sing
lar dependence on the microscopic cutoff. This will also d
fine a useful partial resummation of orders in«l . With the
above considerations, the theory here presented is thus
pected to be correct to first order in«, to all orders in«/l,
and to orderl0 for the regular dependence ofV on the noise
correlation length.

Equation~5! will be our starting point. We are intereste
in representing the dynamics of a front obeying Eq.~5! as the
evolution of a (d21)-dimensional surface. In this effectiv
dynamics we assume the details of the front structure~at
scales of the order of or smaller than the front thickness! to
be unimportant. In what follows we will consider the evol
tion of a one-dimensional front embedded in a tw
dimensional system. In the procedure we are going to ap
we will write the evolution equation~5! in the curvilinear
coordinates defined by the 1D front in the sharp-interfa
limit, and obtain the evolution equation for this front as
solvability problem with the basic assumption that curvatu
and noise are small perturbations.

Before proceeding with the formal derivation, let us fir
point out some subtleties related to the stochastic cas
opposed to the deterministic one. In the latter, it is custom
to define a curvilinear coordinate system (s,r ) in which r
50 stands for the curve representing the front positi
which can be associated, for instance, with a level curve
the appropriate field. The scheme assumes that the f
thickness is small compared to the radius of curvature,
that the relaxation of the internal degrees of freedom of
front is fast compared to the time scale of the long wa
length deformations of the front. When noise is present in
field equation, the appropriate curvilinear coordinate syst
cannot be associated with level curves, which are very ro
at length scales smaller than the front thickness. On the o
hand, at larger scales, which are the ones we are intere
in, a coarse-grained description makes perfect sense. Th
actually implicit in the very idea of the stochastic eikon
equation. One can think of different schemes to explici
define such a coarse-grained description, all of them equ
lent. However, since the rest of the derivation cannot be c
ried out explicitly in full rigor in any of those, and since th
result is expected to be independent of the details of
definition of the coarse graining, we will proceed more
less heuristically. In essence this is a reformulation of
6-3
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approach introduced for the derivation of the diffusive wa
dering of fronts in one dimension discussed in Ref.@13#.
There, the basic idea was that only the low-frequency co
ponents of the noise are responsible for the front wande
so the high-frequency components can be implicitly in
grated out. The effect of the high-frequency components
the noise is thus to renormalize the mean front profile. A
consequence, they renormalize the front velocity, and a
the diffusion coefficient. More precisely, this means in o
case that the high-frequency renormalization is carried
by the Stratonovich term in the functionh. Once this term is
explicitly extracted, the remainder is an Itoˆ multiplicative
noise. Then the high-frequency components of this term
irrelevant and can be averaged out, while the low-freque
components will be responsible for the roughening of
front at scales larger than the coarse-graining length. In
case of 1D fronts, the resulting diffusion coefficient for t
front wandering was rederived rigorously in Ref.@15#. Un-
fortunately, the identification of the collective variable in 1
cannot be immediately generalized to higher dimensions
we must still rely on a less precise formulation and check
consistency with rigorous results and numerical simulati
a posteriori.

After the above considerations, we can make the follo
ing theoretical construction. We assume we have solved
field equations with noise without any approximation. W
now coarse-grain the fields with some local average pro
dure, in both time and space, and use the coarse-gra
fields to define a curvilinear coordinate system based,
instance, in terms of level curves at any time. At short len
and time scales this coordinate system is smooth and
principle, we could write the full field equation~still with the
bare fields! in these curvilinear coordinates. In the absence
noise, an expansion in the front thickness would unambi
ously yield the terms that are dominant in the range that
eikonal equation is devised for, namely, for sufficiently lo
length scales~small curvatures! and long time scales. Term
such as second derivatives ins and the time derivative would
automatically drop out of the description. In the presence
stochastic noise, this is not so automatic unless the fi
themselves are coarse grained so that they are also s
ciently smooth in space and time. We assume that, for
coarse-grained fields, the order of the different terms in
front thickness will be the same as for the deterministic ca
when such an expansion makes sense~excluding pulled
fronts, for instance!. We claim that this assumption is the on
implicit in the very idea of the existence of a stochastic
nematic formulation of the front dynamics. Then, for t
coarse-grained fields, Eq.~5! is expected to reduce, in ana
ogy to the deterministic case, to

D̂
]2f

]r 2
1D̂k~s,t !

]f

]r
1h~f!1vn~s,t !

]f

]r

1«1/2V~f;r ,s;t !50, ~9!

wherek is the local curvature andvn the normal velocity of
the front. This normal velocity provides the evolution of th
curvilinear coordinates in which Eq.~5! takes the form of
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Eq. ~9!, and is the fundamental quantity we are interested
The noise term in Eq.~9! must also be considered as coar
grained, with the high-frequency high-wave-number comp
nents integrated out.

At this point of the derivation it is useful to consider th
1D problem which corresponds to the zeroth order of
eikonal description. This is defined by neglecting the cur
ture and the fluctuating term in Eq.~9!:

05D̂
]2f0

]r 2
1 v̄~«l!

]f0

]r
1h~f0!. ~10!

This is the eigenvalue problem that gives the renormali
velocity v̄ in the 1D problem as obtained in Refs.@12,13#.
Note that this equation does contain noise effects through
high-frequency renormalization provided by the Stratonov
term. In fact, the effective velocityv̄(«l) resulting from Eq.
~10! has contributions from all orders in the dressed no
intensity «l . An explicitly first order in«l approximation
will be given in the Appendix. In the problem defined by E
~9! the curvature and fluctuations will be taken as small p
turbations. Hence we assume for the fieldf and the velocity
vn expansions of the form

f~r ,s,t !5f0~r !1df~r ,s,t !, ~11!

vn~s,t !5 v̄~«l!1b~«l!k~s,t !1dv~s,t !, ~12!

wheref0(r) andv̄(«l) are the solution of the 1D problem o
Eq. ~10!. The termbk(s,t) is a curvature correction an
dv(s,t) describes fluctuations. Linearizing in both perturb
tions,df(r ,s) then satisfies

05Ĝdf1~bk1dv !
]f0

]r
1D̂k

]f0

]r

1«1/2V~f0 ;r ,s;t !, ~13!

where

Ĝ5D̂
]2

]r 2
1 v̄~«l!

]

]r
1

]h

]f
U

f5f0

. ~14!

Taking the derivative of Eq.~10! with respect tor, it is a
simple matter to prove that

u05
]f0

]r
~15!

is the right eigenvector ofĜ with zero eigenvalue. Due to th

non-Hermiticity of Ĝ, finding an analytic expression for th
left eigenvectoru0 is not trivial. Notice that, because of th
vectorial character of the field, the simple expression
tained in Ref.@13# for scalar fields is in general not appl
cable. Nevertheless, the corresponding eigenvector can
ways be obtained at least numerically.

Now, taking Eq.~13! and performing the scalar produc
with u0, we obtain
6-4
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k~u0,D̂u0!1bk~u0,u0!1«1/2
„u0,V~f0 ;r ,s;t !…

1dv~s,t !~u0,u0!50, ~16!

where the scalar product is defined by

~ f,g!5(
i
E dr f i~r !gi~r !. ~17!

Owing to the independence of the two first-order pertur
tions ~curvature and fluctuations!, we get

b~«l!52
~u0,D̂u0!

~u0,u0!
~18!

and

dv~s,t !52«1/2
~u0,V~f0 ;r ,s;t !!

~u0,u0!
. ~19!

The stochastic process~19! is not white since the high
frequency components ofV have been integrated out by th
coarse-graining procedure. However, we can now res
them harmlessly by replacingV with the original multipli-
cative white noise process. By doing this, we are modify
the part that is not intended to be accounted for by the e
nal description, while the treatment becomes simpler. Ana
gously, once the dependence on the cutoffl has been explic-
itly worked out, we can take the process~19! asd-function
correlated in space. We will explicitly check the limit o
validity of the eikonal description here proposed when sca
comparable to the front thickness are reached, in the sec
below.

The resulting stochastic eikonal equation with the expl
dependence on the original noise parameters then take
form

vn~s,t !5 v̄~«l!1b~«l!k~s,t !1D f
1/2~«,«l!z~s,t ! ,

~20!

where v̄(«l) is defined by Eq.~10!, b(«l) is given by Eq.
~18!, and the noisez(s,t) is a zero mean Gaussian whi
process with

^z~s,t !z~s8,t8!&52d~s2s8!d~ t2t8!, ~21!

which follows from the statistical properties ofV with

D f~«,«l!5«

E dr(
i , j

ui
0uj (0)gi~f0!gj~f0!

~u0,u0!2
. ~22!

Note that the dependence ofD f on the dressed noise inten
sity «l comes from the dependence on the same quantit
f0 ~and hence ofu0 andu0) as the solution of the renorma
ized problem of Eq.~10!.

The above equations constitute the main result of the
part of the paper. Although the derivation is not rigoro
because the coarse graining could not be carried out ex
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itly, the result is appealing from the theoretical point of vie
in that it separates the problem into an effective determini
one, where the original field equations are modified by ad
tional deterministic terms which depend on noise paramet
plus an additive noise that would be the necessary on
describe the wandering of the problem in one dimension.
the renormalized one-dimensional deterministic proble
therefore, the two present perturbations, curvature and no
decouple from each other.

An important point to emphasize here is the separate
pendence of the result on two noise parameters, namel«
and«l . While the renormalized velocity and the coefficie
of the curvature depend solely on«l , the effective noise
intensity D f depends separately on both. This clearly illu
trates how the ultraviolet cutoff is an additional parameter
the problem when the noise is multiplicative, correspond
to the fact that the continuum limit is not well defined fo
noised-function correlated in space. It is also important
remark that our derivation procedure is expected to be v
for small noise intensity«, but contains all orders in«l .
This was already the case in the one-dimensional deriva
of Ref. @13#, where the small noise approximation wa
phrased in terms of a separation of time scales. The con
tion between that scale separation, the coarse-graining
cedure, and the small noise expansion was recently clar
in Ref. @18#, where a rigorous derivation of the result of Re
@13# was presented for the case of a single-component fi
in one dimension, in terms of suitable projection techniqu
Unfortunately, that rigorous derivation is based on the id
tification of a specific collective coordinate, which has
simple extension to higher dimensions. Nevertheless, the
that this approximate procedure has proved correct in
gives further support to our main result above, which is n
claimed to be rigorously proved. In the following sectio
we will check this prediction against analytical results a
numerical simulations of the full reaction-diffusion equatio
in explicit examples. We will see that the dependence on
cutoff l is essential not only for a quantitative description
the problem, but also to predict nontrivial phenomena su
as the transition to pulled fronts, in which the whole eikon
description fails. This failure of the present description
signaled by the vanishing of the effective noise intensityD f
when that point is reached. In fact,D f is linear in« to lowest
order, but has a complicated dependence on«l . As we will
explicitly see, the partial resummation of orders in«l cap-
tures important physical features of the problem. For
stance, it allows the nonmonotonic dependence and even
vanishing of the front diffusion coefficientD f . We expect
the pushed-pulled transition to occur exactly at this po
Another qualitative change captured by the above resum
tion is the destruction of the front itself, associated with t
fact that the front thickness may diverge in some circu
stances. This phenomenon is signaled by a divergence oD f
at some finite value of«l .

Although the predictions above are expected to be cor
for el;1 as long ase!1, in practice this may be limited by
the fact thatv̄(«l) and the Goldstone modes are not in ge
eral analytically known. In this case one can rely on nume
6-5
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cal resolutions of the eigenvalue problem posed by Eq.~10!,
or alternatively one can findv̄(«l) as a systematic expansio
in powers of«l as described in the Appendix. On the oth
hand, it is worth remarking thatb can be a nontrivial func-
tion of «l only for multicomponent fields, that is, for pulse
For one-component fields~fronts! the coefficientb is not
renormalized by noise.

We remark that this derivation is meaningful only wh
pulses are involved or, in the case of fronts, when the
evant dynamical regime is the pushed one. In Sec. V of
paper, we shall give more details about the main differen
between pushed and pulled fronts, and about their diffe
responses to noise. For the time being, we point out that
lack of time-scale separation between the relaxation of
zero mode and the other eigenmodes of the spectral ope
for pulled fronts prevents us in general from constructing
local equation for the interface motion@29#. Examples of
reaction-diffusion systems that do not admit local kinema
descriptions are the phase-field formulations of solidificat
@30,40# or viscous fingering@32#. In those cases a nonloca
interface equation does exist so an extension of our der
tion is in principle feasible. This may be particularly inte
esting in cases such as those in Refs.@40,32# where the rel-
evant fluctuations may be external.

III. KINETIC ROUGHENING AND CONNECTION
TO EQUILIBRIUM FLUCTUATIONS

In the previous section, we derived a stochastic sharp
terface approximation for a generic reaction-diffusion~RD!
system with multiplicative noise. A pictorial description of
noisy front is given in Fig. 1. We see in this figure that no
in the RD system induces fluctuations in the front shape, t
generating roughening of the sharp interface that sho
emerge at the eikonal level of description. The identificat
of universality classes of kinetic roughening will come na
rally at this level of description. In particular, we will esta
lish the connection with the universality classes defined
the Kardar-Parisi-Zhang equation@35# and the Edwards-
Wilkinson ~EW! equation@45#.

The stochastic eikonal equation~20! is written in intrinsic,
rotation invariant form. For the purposes of scaling theor
is convenient to write it in Cartesian coordinates. The fro
location is then given asy5h(x,t). Retaining only the rel-

FIG. 1. An example of a noisy front with a level curve th
defines the precise location of the front.
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evant nonlinear terms in the renormalization group~RG!
sense, we then recover the KPZ equation

]h

]t
5n

]2h

]x2
1

l

2 S ]h

]xD 2

1m~x,t !, ~23!

with

^m~x,t !m~x8,t8!&52DKPZd~x2x8!d~ t2t8!. ~24!

The KPZ parameters turn out to be related to the eiko
ones as

DKPZ5D f , n5b, l5 v̄. ~25!

In the special case ofv̄50, the EW equation is obtained,

]h

]t
5n

]2h

]x2
1m~x,t !, ~26!

with

^m~x,t !m~x8,t8!&52DEWd~x2x8!d~ t2t8!, ~27!

and again

DEW5D f , n5b. ~28!

These equations are well known to be the paradigm for m
different growth processes@33,34#. Even if the microscopic
dynamics of the system under study may correspond to
ferent equations of motion for the respective interfaces
surfaces, nevertheless the KPZ and EW equations do cap
the universal features of the system, namely, the sca
properties of fluctuations.

Usually, such effective equations cannot be derived fr
the original microscopic description of the particular syste
and are introduced on a phenomenological basis, relying
the claim of universality within a RG framework. Nonun
versal quantities such as prefactors of scaling functions,
fected, for instance, by the noise intensity in the interfa
equation, cannot be derived. In our case, we are able to c
pute the noise intensity in the eikonal equation so we
also predict the nonuniversal prefactors if the noise is kno
at the reaction-diffusion level of description. For instanc
not only can the scaling of the interface roughness with s
tem size be predicted, but also the actual values of ave
interface roughness in terms of the original microscopic
rameters of the RD model are worked out.

As a test of our derivation we will now check consisten
with equilibrium fluctuation theory. The connection betwe
bulk thermal fluctuations and fluctuations of the interfa
between thermodynamical phases can be established r
ously in the case of equilibrium fluctuations. This is possib
because a free-energy functional does exist and the sh
interface limit can be performed at the level of the free e
ergy itself. Then, the fluctuations can be obtained indep
dently from the free energy at each level of descripti
~either bulk or interface fluctuations!, consistently with the
fluctuation-dissipation theorem. The important differen
6-6
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here is that no dynamical equation must be invoked, but o
equilibrium properties. On the contrary, in the more gene
case where there is no fluctuation-dissipation theorem
not even a free-energy functional, we must rely on dynam
equations. In the case of equilibrium fluctuations, howev
we must reproduce the known correct result. As we will s
below, this case falls in the EW universality class.

The general solution of the EW equation, Eq.~26!, is
known @34#. Consider the interfaceh(x,t) and its discrete
Fourier transformĥq(t), defined through

h~x,t !5(
q

ĥq~ t !exp~ iqx!. ~29!

It is possible to show@34# that the long time limit of the
spectrumS(q,t)5^uĥq(t)u2& is given by the expression

lim
t→`

S~q,t !5
1

L

DEW

nq2
. ~30!

Our strategy now will be to calculate explicitly the spectru
~30! in terms of the coefficients predicted for our eikon
equation, and then show that the resulting expression c
cides with the independent result that can be obtained f
equilibrium fluctuation theory. Hence we insert an additi
noise in the original RD system, that is, in settingg51,

]f

]t
5D¹2f1F~f!1«1/2h~x,t !, ~31!

with

^h~x,t !h~x8,t8!&52d~x2x8!d~ t2t8!. ~32!

We consider anF(f) with a symmetric double-well form
i.e., the deterministic part of Eq.~31! has a 1D solution with
zero velocityf5f0(x). This corresponds to the usual tim
dependent Gizburg-Landau Langevin equation for a nonc
served order parameter~model A in the Hohenberg-Halperi
classification@36#!, where noise intensity must be identifie
as«5kBT. Sinceg51, our expression for the noise intensi
at the sharp interface level takes the simpler form

D f5
«

E
2`

`

dx~]f0 /]x!2

, ~33!

which, according to Eq.~30! and performing the identifica
tions of Eq.~28! with b5D, produces

lim
t→`

^uĥq~ t !u2&5
«

LDE
2`

`

dx~]f0 /]x!2

1

q2
. ~34!

On the other hand, we can take the sharp-interface limi
the free Ginzburg-Landau free energy. The calculation
standard~see, for instance, Ref.@37#! and yields the interface
free energy
05611
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FI5sE dxA11S ]h

]xD 2

, ~35!

where the parameters is identified as the interfacial tensio
and can be evaluated from the bulk free energy of the sys
@37# as

s5DE dxS ]f0

]x D 2

, ~36!

wheref0 is the corresponding kink solution. For soft~long
wavelength! deformations of the interface, the excess fr
energy reads

DFI'
s

2E dxS ]h

]xD 2

, ~37!

and the corresponding stationary spectrum of fluctuatio
consistent with the fluctuation-dissipation theorem, takes
form @37#

^uĥqu2&5
kBT

Lsq2
. ~38!

Using Eq.~36!, this expression yields the same result as E
~34!. This proves that the front roughening obtained from o
derivation is exact in the case of equilibrium fluctuation
and by extension in the additive noise case. We have sh
this for the case of a nonconserved order parameter,
which the connection between the microscopic~Ising-like!
and sharp-interface levels of description is indeed well es
lished. In the conserved case~model B of Ref.@36#!, the
projection to a sharp-interface description yields a nonlo
equation and therefore lies outside the validity of our theo
Similarly, equilibrium fluctuations have also been studied
both sharp-interface@38# and phase-field@39,40# formulation
in the context of solidification, which also yields nonloc
interface dynamics. The universality classes in those ca
are not well established.

IV. APPLICATION TO A PROTOTYPE MODEL OF FRONT
PROPAGATION

To illustrate our general theory we consider here as
example the propagation of a scalar front

]f

]t
5D¹2f1F~f,a!1«1/2g~f!h, ~39!

with the noise correlator defined as in Eq.~2!. We specify our
prototype model through the following definitions:

F~f!5f~12f!~f1a!, ~40!

g~f!5f~12f!, ~41!

and we will consider a front of thef51 state invading the
f50 one. The constanta is a control parameter. As is we
known for fronts without fluctuations, the deterministic forc
given by Eq.~40! leads to different modes of front propag
6-7
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tion depending on the value ofa @2#. The front velocity also
depends ona. The choice of the coupling function~41! for
the multiplicative noise term of Eq.~39! is the simplest one
that preserves the stationary statesf50 andf51. The fact
that the noise term vanishes in the two asymptotic sta
prevents nucleation phenomena in the invaded state.
form of g(f) is also such that the multiplicative noise ter
arises naturally as the fluctuation of the control parametea.
Moreover, for the prototype model here proposed, the co
sponding functionh(f) defined in Eq.~6! which appears in
the renormalized equation takes the same functional form
f (f), only with renormalized coefficients. This allows a sim
pler analytical treatment and intepretation of the results.

A. The 1D case revisited

This prototype model has already been analyzed for 1D
Refs. @12,13#, where in the regime2«l,a,1/22«l it is
shown to result in a renormalized average velocity

v̄5
2a11

A2~122«l!
~42!

and in the diffusion coefficient

D f5«

E
2`

`

dje2v̄j~df0 /dj!2g2~f0!

F E
2`

`

djev̄j~df0 /dj!2G2 . ~43!

Heref0 is the solution of the zeroth-order equation:

d2f0

dj2
1 v̄

df0

dj
1h~f0!50. ~44!

Notice the dependence of both these quantities onl through
the«l parameter. Specifically about the diffusion coefficie
the first order dependence in« is apparent, while the func
tions present in the integral and defined through Eq.~44!
contain all orders in«l . This is in contrast to the renorma
ized velocity, which depends solely on«l . This means that
both« andl can be determined independently from separ
measurements of both the ballistic and the diffusive com
nents of the front propagation. This is quite remarkable si
it provides indirect means of measurement of the~micro-
scopic! noise, which may not be directly accessible in ma
cases.

As an illustrative and well-controlled example, we ha
explicitly tested the prediction of the dependence onl of
both velocity and diffusion coefficient with direct numeric
simulation of the RD equation. The first set of results
shown in Fig. 2. Here data from a simulation of the R
equation with the reaction term~40! are reported and com
pared with the theoretical prediction~42! for two different
values ofl51 andl55, in some dimensionless units of th
simulation. Notice that the result is indeed sensitive to
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microscopic cutoffl of the noise, even though this length
significantly smaller than the front thickness, of the order
25, in the same units.

Regarding the diffusion coefficient~43!, we measured the
mean square displacement of the front position. If we defi
the front position as

z~ t !5E
x0

`

dxf~x,t !, ~45!

then the diffusion coefficient~43! is related to the mean
square displacement

D5A^z2&2^z&2 ~46!

as

D2~ t !;2D ft. ~47!

In Fig. 3 the quantityD(t) is plotted. The values of the
parameters are the same as in Fig. 2, while the valuesl

FIG. 2. Change withl of the average renormalized velocity
Values of the parameters area50.1, «50.1, l51,5. The theoret-
ical values of the corresponding average velocities from Eq.~42!,
0.948 and 0.866, are also plotted.

FIG. 3. Change withl of the diffusion coefficient for the front
wandering in 1D. Parameters have the same values as in Fig.
6-8
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KINEMATIC REDUCTION OF REACTION-DIFFUSION . . . PHYSICAL REVIEW E65 056116
run from 1 to 15. The diffusive behavior and the depende
on the value ofl are manifest.

In this particular case of 1D, a more systematic derivat
of the diffusion coefficient has been reported in Ref.@15#. By
proper identification of the natural collective variable whi
describes the front wandering as strictly~not just asymptoti-
cally! diffusive, it has been shown that, in fact, the result fi
found in Ref. @13# is rigorous to first order in«. Together
with the case of equilibrium fluctuations, this is the seco
rigorous test of our general theory.

B. The 2D case

Let us now consider the propagation of a front in t
prototype model of Eqs.~39!, ~40!, and~41! in 2D. We have
already shown that in two dimensions the eikonal equa
reduces to either the EW equation or the KPZ equation,
pending on whether the velocity of a planar front is zero
nonzero, respectively. In order to make a numerical chec
our theory we consider then the simplest case of zero ve
ity, with expected EW scaling. This case corresponds to
choicea521/2 in Eq.~40!. As seen explicitly in Eq.~42! it
turns out that the renormalized velocity is also zero, since
noise does not break the symmetry associated with
double-well form of the deterministic potential. It is impo
tant to remark that, unlike the Ginzburg-Landau model d
cussed in Sec. III for the equilibrium case, the noise is n
multiplicative, and no fluctuation-dissipation theorem can
invoked. Hence the first-principles derivation of the fluctu
tion spectrum in the sharp-interface description is no lon
available. We thus rely on the dynamical equation

]f

]t
5D¹2f1f~12f!~f2 1

2 !1«1/2f~12f!h~x,t !, ~48!

where the noiseh is defined through the usual correlator
Eq. ~2!.

Now, our basic goal is to connect this level of descripti
with the eikonal level, determining thereby the noise corr
tions to this equation. Therefore we assume a stochasti
konal equation of the form

vn~s!52bk1D f
1/2z~s,t !,

^z~s,t !z~s8,t8!&52d~s2s8!d~ t2t8!, ~49!

where the coefficientsb andD f are given by

b5D, D f5

E dxu0u0g2~f0!

~u0,u0!2
. ~50!

Notice that we have directly taken into account that the b
as well as the noise-renormalized velocities are both z
~see, for example,@13#!. Also notice that the renormalizatio
of the curvature term is absent for both« and«l expansions
due to the fact that we are now dealing with a front (N
51).
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Now, in order to calculateD f , we need to specify the
solution of the 1D model. This is known and fora521/2 is
given by

f05
1

2
~12tanhkx!, k5

1

2A2
, ~51!

and

u05u05
df0

dx
. ~52!

The integral in Eq.~50! can then be computed exactly an
gives

D f5«
9

35
A 2

122«/l2
. ~53!

The above result clearly illustrates the different treatmen
the parameters« and«/l2. The result is first order in« and
contains all orders in«/l2. It is interesting to remark that the
partial resummation of all orders ine captures important
nonperturbative phenomena. For instance, the divergenc
D f at «/l251/2 reflects the fact that at this point the fro
itself is destroyed, or, equivalently, the front thickness b
comes infinite. This is equivalent to reaching a critical poi
except that this is not the equilibrium one because the n
is multiplicative. Remarkably, our result for the additiv
noise case does not capture that feature because it is
first order in the noise strength. In the case with an asy
metric double-well potential, which has a finite front velo
ity, it was explicitly checked numerically in Ref.@13# that the
diffusion coefficient of the front has a nonmonotonic depe
dence on«/l2. Most importantly, it vanishes at a finite valu
of «/l2 that corresponds exactly to the point where the fro
reaches the pushed-pulled transition. Again we see that
resummation of orders«/l2 captures important physical in
formation ~see the discussion in Sec. V!.

We now come back to the numerical test of the EW sc
ing of our particular symmetric case, with the identificatio
~28!. Accordingly, we can rewrite the complete power spe
trum as it is known theoretically@34# in terms of the coeffi-
cients that we just calculated, and compare it with data fr
a direct simulation of the field model Eq.~48!.

From @34# the power spectrumS reads

S~q,t !5
1

L

DEW

nq2
@12exp~22nq2t !#. ~54!

In terms of the parameters in the original field equation t
yields

S~q,t !5
1

L

D f

Dq2
@12exp~22Dq2t !#, ~55!

whereD f is given by Eq.~53!. Accordingly, the fluctuations
of the front position in the RD model Eq.~39! for length
scales larger than the front thickness itself must obey
6-9
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spectrum defined by Eq.~55!. It is worth remarking that the
prediction is not only for the universal features, namely,
shape of the scaling function and the exponents, but for
actual absolute values of the spectrum. We have perfor
simulations of the field RD model with a correlator of th
form

^h~x,t !h~x8,t8!&5
1

l2
~12ux2x8u/l!~12uyW2yW 8u/l!

3Q~12ux2x8u/l!

3Q~12uy2y8u/l!d~ t2t8!. ~56!

This corresponds to assuming that at any time the noise t
the same value in a square of sidel, uncorrelated with the
neighboring squares. This is done for simplicity but no s
nificant dependence is expected on the details of the shap
the spatial correlation providedl is kept smaller than the
front thickness.

We have studied the fluctuations of the internal le
curve of the frontf51/2. In Fig. 4 we show the scalin
region, with the correct slope and location of the curve. M
remarkably, Fig. 5 shows the measured spectra for the s
lation of the field equations compared to the prediction giv
by Eq. ~55!. It should be stressed that in this comparis
there is no free parameter. It is also interesting to observe
deviations from the prediction at length scales smaller t
the front thickness. In this high-q region the data also col
lapse but not to EW scaling. An estimate of the exponena
in this region is around 3/2.

For values ofa such that the front has a finite velocit
one would expect that the scaling would be given by tha
the KPZ universality class. Although the scaling function
that case is not exactly known, the prediction of our eiko
equation is expected to fit the data for the corresponding
model also without free parameters. We have not chec
this case because it is obviously more involved and less c

FIG. 4. Numerical data from 2D simulation of the RD fie
equations for the prototype model witha521/2 and analytical
prediction for the power spectrum~55! in the scaling region. The
time here is 1000, and the parameters of the simulation arL
5100, «55, l55.
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clusive given the practical difficulties in already reaching t
scaling regime at the eikonal level of description@46#.

From a practical point of view it is to be remarked that t
noise intensity cannot be increased arbitrarily in a simulat
without destroying the front itself. This can be easily seen
a numerical simulation. Although the noise vanishes asym
totically in the stationary statesf50 andf51, if noise is
sufficiently strong it may be capable of nucleating the oth
state in the region not too far from the front. We have fou
that this effect is more pronounced in the region behind
front f51. For a givenl there will typically be a maximum
value of « after which the front is essentially destroyed.
we increasel the effect is milder. In order to make the fron
roughening appreciable in not too large system sizes, i
thus convenient to have a moderately largel, which in turn
will allow larger values of«. Typical values that we have
considered are in the range ofl52,5 in units for which the
front thickness is of the order of 25.

V. THE PUSHED-PULLED TRANSITION

As we have mentioned, two classes of fronts must
distinguished from a dynamical point of view, the so-call
pushed and pulled fronts@4,29#. The simplest is the pushe
case, in which the front propagation depends on the full n
linear structure of the equation of motion and the front is s
to be ‘‘pushed’’ by its internal part. This is usually the ca
when the invaded state is locally stable. On the contrary
the invaded state is unstable, it can happen that the rele
dynamics takes place in the semi-infinite leading edge reg
ahead of the front itself. Then the propagation of the fron
governed by the growth and spreading of linear perturbati
in that region, which ‘‘pull’’ the front. In this case the linear
ization about the unstable state accounts for its dynam
behavior@4#, but there is degeneracy of propagating velo

FIG. 5. Numerical data from 2D simulation of the RD fie
equations for the prototype model witha521/2 and analytical
prediction for the power spectrum~55!. The three sets of data point
refer to times 50, 250, and 500. The parameters of the simula
areL5500, «51, l52. The value ofqc corresponds to a wave
length of the order of the front thickness. The analytical predict
is intended only forq,qc .
6-10
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KINEMATIC REDUCTION OF REACTION-DIFFUSION . . . PHYSICAL REVIEW E65 056116
ties@2#. In the present context, the most important distinct
between the two situations is that, while for pushed fronts
relaxation of bulk modes is exponential, for pulled fronts it
algebraic, as a result of the fact that the linearized oper
describing perturbations around the stationary propaga
mode is gapless. This means that for pulled fronts there is
natural time-scale separation which allows for the dec
pling of the interface modes from the bulk ones. Our deri
tion, and the whole idea of a kinematic moving-bounda
approximation, is not valid for pulled fronts@29#. Neverthe-
less, we will show that our theory does correctly predict
failure at the pushed-pulled transition.

The intrinsic differences between pushed and pul
fronts also show dramatically in the statistics of fluctuatio
In 1D, for instance, the front wandering turns from diffusi
~pushed fronts! to subdiffusive ~pulled fronts! @13,15#. In
turn, pulled fronts in 2D with multiplicative noise have bee
found to belong to a different universality class from t
ordinary KPZ one@16,17#, as opposed to the KPZ scaling o
pushed fronts.

In Ref. @13# it was already observed that the diffusio
coefficient of fronts in 1D was a nonmonotonic function
«/l which vanished at a finite value of that parameter. Af
that point, subdiffusive behavior was found. The picture w
confirmed and completed in Ref.@15#. Here we want to stres
that the point where that transition occurs correspondsex-
actly to the pushed-pulled transition. In fact, the renorm
ized equation defined by Eq.~5! for the prototype mode
takes the same form as the original one, with renormali
coefficients. The deterministic equation has the transition
the pulled regime ata51/2. The same transition in the reno
malized equation occurs atã51/2 whereã5a1«l . It is
thus clear that, for parameter values of the determini
equation in the pushed regime, increasing noise intensi«
or decreasingl will imply a transition to the pulled regime
While the front velocity will not experience any dramat
effect, the fluctuations~wandering in 1D or roughening in
2D! will be dramatically affected, since the universality cla
will change. In Fig. 6 we show the change from diffusive
subdiffusive behavior induced solely by a change in the

FIG. 6. The pushed-pulled transition in 1D. The system size
L52000 and averages have been carried out on 3600 realizatio
noise in the pulled case and about 1000 in the pushed one.
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fective noise intensity«l . Once more the dynamical impor
tance of the noise correlation lengthl in the long wave-
length behavior of the front is remarkable. The same eff
should be expected in 2D, namely, the scaling could be K
or non-KPZ depending solely on noise parameters. To
knowledge, this is the first time that such a dramatic effec
noise has been reported. Remarkably enough, while ou
konal description is not able to describe the second regim
does predict the transition at the right values of the para
eters.

VI. DISCUSSION AND CONCLUSIONS

The formulation in terms of kinematic eikonal-like equ
tions provides a useful framework for studying front or pul
propagation when one is interested in long spatial and t
poral scales. This kind of equation has advantages both
numerical simulations and for theoretical analysis, and
fruitfully been used, for instance, in the phenomenologi
modeling of excitable wave propagation in disordered a
noisy media, by thead hocprocedure of adding fluctuation
to a generic eikonal equation. In this paper we have deri
stochastic eikonal equations from the more microscopic
field equations with noise, which can be multiplicative.

The derivation presented here relies on the hypothesi
separation of scales between the front dynamics at la
scales and the internal degrees of freedom of the front. T
means that it is not valid for pulled fronts, which are inde
known not to have a local, eikonal-like description even
the absence of noise. However, even for the pushed case
usual projection techniques for derivation of sharp-interfa
equations cannot be simply extended to the stochastic
due to the fact that the noise contains the full range of len
and time scales. Hence our derivation is formulated withi
coarse-graining scheme, which we claim makes sense fo
kind of problems that admit a local, eikonal-like equatio
Derivation of sharp-interface approximations with noise h
been possible so far for thermal noise only, in systems w
local equilibrium. For multiplicative, generically externa
noise, however, the absence of a free energy and
fluctuation-dissipation theorem require an alternative sche
based on dynamical equations. We have explicitly chec
that our scheme is exact for the cases of equilibrium fluct
tions and also reproduces a rigorous result for multiplicat
noise in 1D. For the general case, however, we rely on
merical tests to fully justify its validity. In any case, th
excellent agreement with numerical and analytical te
clearly suggests that a more rigorous derivation should
possible. An extension of our procedure is also conceiva
in RD systems for which a nonlocal sharp-interface desc
tion exists, for instance, in solidification or viscous fingerin

One of the main points of this paper has been to cla
the role of the spatial cutoff of noise correlationsl. On the
basis of recent rigorous mathematical findings on the s
tiotemporal white noise limit, we have argued and shown
explicit examples that the common splitting of the Stratono
ich white noise into a term which is singular asl→0 plus an
Itô noise does capture the correct dependence onl of mac-
roscopic quantities~at scales much larger thanl). The re-
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maining spatially correlated Itoˆ noise will carry only a weak
dependence onl, noticeable at length scales of the order
l, and can be treated perturbatively. Thel→0 limit can thus
be taken safely for the remaining Itoˆ noise, once the singula
part has been extracted. Within this scheme, macrosc
quantities such as the front velocity or front rougheni
properties depend separately on the noise strength« and on
«/ld. Incidentally, this implies the possibility of measurin
the ~microscopic! noise parameters« andl from the macro-
scopic dynamics of the fronts. Most remarkably, a par
resummation scheme can be naturally defined for the par
eter «/ld which captures some important, nonperturbat
physical phenomena that would be missed otherwise, suc
the transition from pushed to pulled regimes, or the destr
tion of the front associated with a divergence of the fro
thickness. These phenomena, at the edge of validity of
sharp-interface approximation, are detected, respectively
the vanishing and the divergence of the effective no
strength in the eikonal equation.

Eikonal stochastic equations like the ones derived here
directly related to the EW and KPZ equations of kine
roughening. By using known results for these equations
the results presented here one can predict roughening p
erties of noisy pulses or fronts appearing in field equatio
We have used this correspondence to check the predictio
the case of zero velocity and additive noise, for which
general theory of equilibrium fluctuations can be directly a
plied to the RD equation. Analytical results obtained for t
corresponding~Edwards-Wilkinson! eikonal equation are
identical ~including prefactors! to that independent calcula
tion for the RD system.

We have also applied our results to a prototype mo
with multiplicative noise constructed to represent a variety
different front propagation regimes by changing a single c
trol parameter. While this model has already been use
study the effects of noise on 1D fronts, we have addres
here a more specific 2D effect, the case of front roughen
In the zero-velocity case, simulations of the reactio
diffusion equation presented very good agreement with
predictions of roughening for the corresponding EW eq
tion with no adjustable parameter. The results show that
dependence onl is quantitatively important even ifl is
significantly smaller than the front thickness, which m
seem counterintuitive. Although we have not checked
analogous results for a nonzero velocity, which would cor
spond to the KPZ equation, we expect our results to be v
also in this case.

Most interestingly we have explicitly checked the pred
tion of qualitative changes as«/ld is varied, such as the
transition from pushed to pulled propagation regimes.
have directly observed the change in the wandering expo
in 1D as l is decreased. The immediate extension of t
result implies that a transition from KPZ to non-KPZ scali
is to be expected in higher dimensions. We thus concl
that the dependence on the spatial cutoff of the noise m
have dramatic effects, not only on the nonuniversal qua
ties but also on the universal ones.

In summary, we have derived stochastic eikonal equati
from stochastic RD equations completely specifying the
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rameters of the noise. Although this is not a systematic d
vation, we have presented a wealth of independent evide
of the validity of our results both from analytical calculation
and from numerical simulations of different systems a
looking at distinct noise effects, both qualitative and quan
tative. These results should be of interest for theoretical
practical purposes both in the study of kinetic roughen
and in the context of propagation of chemical waves.
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APPENDIX: SYSTEMATIC EXPANSION

In some circumstances, the eigenvalue problem defi
by Eq.~10! may not be solvable analytically, due to the fun
tional form ofh(f0), which has been renormalized by nois
even though the ‘‘bare’’ problem may be solvable. In su
cases it may be useful to solve for the case«50 ~no noise!
and obtain corrections in a systematic expansion in«. This is
the aim of this appendix.

Let us consider then the zero-noise eigenvalue prob
defined by the~deterministic! 1D equation

05D̂
]2fD
]r 2

1v0

]fD
]r

1f~fD!. ~A1!

We now expand the fields of the noisy 2D problem of Eq.~9!
as perturbations in« andk of the solution of Eq.~A1!:

f~r ,s,t !5fD~r !1df~r ,s,t !, ~A2!

vn~s,t !5v01a«1bk~s,t !1dv~s,t !. ~A3!

We get at the linear order

05Ĝ0df1«G~fD!1~a«1bk1dv !
]fD
]r

1D̂k
]fD
]r

1«1/2V~fD ;r ,s;t !, ~A4!

where

Ĝ05D̂
]2

]r 2
1v0

]

]r
1

]f

]f
U

f5fD

. ~A5!

Now the right eigenvector ofĜ0 reads
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u(0)5
]fD
]r

, ~A6!

which is independent of both« andk. Taking Eqs.~A4! and
performing the scalar product with the left eigenvectoru(0),
we get

k~u(0),D̂u(0)!1~a«1bk!~u(0),u(0)!

1«„u(0),G~fD!…1«1/2
„u(0),V~fD ;r ,s;t !…

1dv~s,t !~u(0),u(0)!50. ~A7!

As curvature and fluctuations are linear perturbations we

a52
„u(0),G~fD!…

~u(0),u(0)!
, b52

~u(0),D̂u(0)!

~u(0),u(0)!
, ~A8!

and
J,

nd

rc
.

ev

, L

-

o

o
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et

dv~s,t !52«1/2
„u(0),V~fD ;r ,s;t !…

~u(0),u(0)!
. ~A9!

The stochastic eikonal equation is now

vn~s,t !5v01a«1bk~s,t !1D f
1/2~«!z~s,t ! , ~A10!

where the noisez(s,t) is a zero-mean Gaussian white pr
cess with

^z~s,t !z~s8,t8!&52d~s2s8!d~ t2t8! ~A11!

and

D f~«!5«

E dr(
i , j

ui
(0)uj (0)gi~fD!gj~fD!

~u(0),u(0)!
2

. ~A12!
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